bedrock.lang.proofmode.own_obs
(*
* Copyright (C) BedRock Systems Inc. 2021
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import iris.algebra.lib.gmap_view.
Require Import bedrock.lang.algebra.gset_bij.
Require Import bedrock.lang.algebra.coGset.
Require Import bedrock.lang.si_logic.algebra.
Require Import bedrock.lang.bi.prelude.
Require Import bedrock.lang.bi.observe.
Require Import bedrock.lang.bi.includedI.
Require Import bedrock.lang.bi.own.
Require Import bedrock.lang.proofmode.proofmode.
Set Printing Coercions.
Implicit Types (p q : Qp) (dp dq : dfrac).
* Copyright (C) BedRock Systems Inc. 2021
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import iris.algebra.lib.gmap_view.
Require Import bedrock.lang.algebra.gset_bij.
Require Import bedrock.lang.algebra.coGset.
Require Import bedrock.lang.si_logic.algebra.
Require Import bedrock.lang.bi.prelude.
Require Import bedrock.lang.bi.observe.
Require Import bedrock.lang.bi.includedI.
Require Import bedrock.lang.bi.own.
Require Import bedrock.lang.proofmode.proofmode.
Set Printing Coercions.
Implicit Types (p q : Qp) (dp dq : dfrac).
Observations from ownership
We prove basic observations from own g for various CMRAs. We don't attempt to cover all CMRAs, but we aim to cover goals of the following forms for those CMRAs we do cover.- False from own g a ** own g b when either is Exclusive, with
variations for exclR, auth_exclR, fracR 1, excl_authR, etc.
- False from own g a for Empty_set, ExclBot, etc.
Section observe.
#[local] Set Default Proof Using "Type*".
Context `{!BiEmbed siPropI PROP}.
Context `{!BiInternalEq PROP, !BiEmbedInternalEq siPropI PROP}.
Context `{!BiPlainly PROP, !BiEmbedPlainly siPropI PROP}.
Notation HasOwn RA := (HasOwn PROP RA).
Notation HasOwnValid RA := (HasOwnValid PROP RA).
Notation Observe := (@Observe PROP).
Notation Observe2 := (@Observe2 PROP).
Ensure that none of the following instances are already derivable.
#[local] Ltac GUARD := assert_fails (intros; by apply _).
Section equivI.
Context {A : ofe}.
Implicit Types a b : A.
#[global] Instance observe_discrete_eq a b P `{!Discrete a} :
Observe (a ≡ b) P → Observe [| a ≡ b |] P.
Proof. GUARD. rewrite/Observe=>->. iIntros (?). auto. Qed.
#[global] Instance observe_discrete_eq_L `{!LeibnizEquiv A} a b P
`{!Discrete a} :
Observe (a ≡ b) P → Observe [| a = b |] P.
Proof. GUARD. unfold_leibniz. apply _. Qed.
End equivI.
Section equivI.
Context {A : ofe}.
Implicit Types a b : A.
#[global] Instance observe_discrete_eq a b P `{!Discrete a} :
Observe (a ≡ b) P → Observe [| a ≡ b |] P.
Proof. GUARD. rewrite/Observe=>->. iIntros (?). auto. Qed.
#[global] Instance observe_discrete_eq_L `{!LeibnizEquiv A} a b P
`{!Discrete a} :
Observe (a ≡ b) P → Observe [| a = b |] P.
Proof. GUARD. unfold_leibniz. apply _. Qed.
End equivI.
iris.algebra.ofe, iris.algebra.cmra
Discrete elements
#[global] Instance observe_discrete_includedI a b P `{!Discrete b} :
Observe (a ≼ b) P → Observe [| a ≼ b |] P.
Proof. GUARD. rewrite /Observe=>->. iIntros "%". auto. Qed.
#[global] Instance observe_discrete_validI `{CmraDiscrete A} a P :
Observe (✓ a) P → Observe [| ✓ a |] P.
Proof. GUARD. rewrite /Observe=>->. iIntros "%". auto. Qed.
Section own.
Context `{!HasOwn A, !HasOwnValid A}.
#[local] Lemma own_obs Q g a : (✓ a ⊢ Q) → Observe Q (own g a).
Proof.
iIntros (HQ) "A". iDestruct (own_valid with "A") as "#V".
rewrite HQ. auto.
Qed.
#[local] Lemma own_2_obs Q g a b :
(✓ (a ⋅ b) ⊢ Q) → Observe2 Q (own g a) (own g b).
Proof.
iIntros (HQ) "A B". iDestruct (own_valid_2 with "A B") as "#V".
rewrite HQ. auto.
Qed.
Observe (a ≼ b) P → Observe [| a ≼ b |] P.
Proof. GUARD. rewrite /Observe=>->. iIntros "%". auto. Qed.
#[global] Instance observe_discrete_validI `{CmraDiscrete A} a P :
Observe (✓ a) P → Observe [| ✓ a |] P.
Proof. GUARD. rewrite /Observe=>->. iIntros "%". auto. Qed.
Section own.
Context `{!HasOwn A, !HasOwnValid A}.
#[local] Lemma own_obs Q g a : (✓ a ⊢ Q) → Observe Q (own g a).
Proof.
iIntros (HQ) "A". iDestruct (own_valid with "A") as "#V".
rewrite HQ. auto.
Qed.
#[local] Lemma own_2_obs Q g a b :
(✓ (a ⋅ b) ⊢ Q) → Observe2 Q (own g a) (own g b).
Proof.
iIntros (HQ) "A B". iDestruct (own_valid_2 with "A B") as "#V".
rewrite HQ. auto.
Qed.
Validity from ownership
#[global] Instance own_validI g a : Observe (✓ a) (own g a).
Proof. GUARD. by apply own_obs. Qed.
Lemma test `{!CmraDiscrete A} g a : Observe [| ✓ a |] (own g a).
Proof. by apply _. Abort.
#[global] Instance own_2_validI g a b :
Observe2 (✓ (a ⋅ b)) (own g a) (own g b).
Proof. GUARD. by apply own_2_obs. Qed.
#[global] Instance own_2_valid `{!CmraDiscrete A} g a b :
Observe2 [| ✓ (a ⋅ b) |] (own g a) (own g b).
Proof. GUARD. apply observe_2_pure, own_2_obs. auto. Qed.
Proof. GUARD. by apply own_obs. Qed.
Lemma test `{!CmraDiscrete A} g a : Observe [| ✓ a |] (own g a).
Proof. by apply _. Abort.
#[global] Instance own_2_validI g a b :
Observe2 (✓ (a ⋅ b)) (own g a) (own g b).
Proof. GUARD. by apply own_2_obs. Qed.
#[global] Instance own_2_valid `{!CmraDiscrete A} g a b :
Observe2 [| ✓ (a ⋅ b) |] (own g a) (own g b).
Proof. GUARD. apply observe_2_pure, own_2_obs. auto. Qed.
Exclusive elements
#[global] Instance own_exclusive_l g a b `{!Exclusive a} :
Observe2 False (own g a) (own g b).
Proof.
GUARD. apply own_2_obs.
iApply (exclusive_includedI a). by iExists b.
Qed.
#[global] Instance own_exclusive_r g a b `{!Exclusive b} :
Observe2 False (own g a) (own g b).
Proof. GUARD. symmetry. apply _. Qed.
End own.
End cmra.
Section empty.
Notation RA := Empty_setR.
Context `{!HasOwn RA, !HasOwnValid RA}.
#[global] Instance own_Empty_set g x : Observe False (own g x).
Proof. GUARD. by apply own_obs. Qed.
End empty.
Observe2 False (own g a) (own g b).
Proof.
GUARD. apply own_2_obs.
iApply (exclusive_includedI a). by iExists b.
Qed.
#[global] Instance own_exclusive_r g a b `{!Exclusive b} :
Observe2 False (own g a) (own g b).
Proof. GUARD. symmetry. apply _. Qed.
End own.
End cmra.
Section empty.
Notation RA := Empty_setR.
Context `{!HasOwn RA, !HasOwnValid RA}.
#[global] Instance own_Empty_set g x : Observe False (own g x).
Proof. GUARD. by apply own_obs. Qed.
End empty.
iris.algebra.excl
Section excl.
Import iris.algebra.excl.
Context {A : ofe}. Notation RA := (exclR A).
Context `{!HasOwn RA, !HasOwnValid RA}.
#[global] Instance own_excl_bot g : Observe False (own g ExclBot).
Proof. GUARD. apply own_obs. by rewrite excl_validI. Qed.
Lemma own_excl_l g a x : Observe2 False (own g (Excl a)) (own g x).
Proof. by apply _. Abort.
Lemma own_excl_r g a x : Observe2 False (own g x) (own g (Excl a)).
Proof. by apply _. Abort.
End excl.
Section option_excl.
Import iris.algebra.excl.
Context {A : ofe}. Notation RA := (optionR (exclR A)).
Context `{!HasOwn RA, !HasOwnValid RA}.
#[global] Instance own_excl_inv_l g mx a :
Observe2 [| mx = None |] (own g (Excl' a)) (own g mx).
Proof. GUARD. apply observe_2_pure, own_2_obs, excl_validI_inv_l. Qed.
#[global] Instance own_excl_inv_r g mx a :
Observe2 [| mx = None |] (own g mx) (own g (Excl' a)).
Proof. GUARD. symmetry. apply _. Qed.
End option_excl.
Import iris.algebra.excl.
Context {A : ofe}. Notation RA := (exclR A).
Context `{!HasOwn RA, !HasOwnValid RA}.
#[global] Instance own_excl_bot g : Observe False (own g ExclBot).
Proof. GUARD. apply own_obs. by rewrite excl_validI. Qed.
Lemma own_excl_l g a x : Observe2 False (own g (Excl a)) (own g x).
Proof. by apply _. Abort.
Lemma own_excl_r g a x : Observe2 False (own g x) (own g (Excl a)).
Proof. by apply _. Abort.
End excl.
Section option_excl.
Import iris.algebra.excl.
Context {A : ofe}. Notation RA := (optionR (exclR A)).
Context `{!HasOwn RA, !HasOwnValid RA}.
#[global] Instance own_excl_inv_l g mx a :
Observe2 [| mx = None |] (own g (Excl' a)) (own g mx).
Proof. GUARD. apply observe_2_pure, own_2_obs, excl_validI_inv_l. Qed.
#[global] Instance own_excl_inv_r g mx a :
Observe2 [| mx = None |] (own g mx) (own g (Excl' a)).
Proof. GUARD. symmetry. apply _. Qed.
End option_excl.
iris.algebra.frac
Section frac.
Import iris.algebra.frac.
Notation RA := fracR.
Context `{!HasOwn RA, !HasOwnValid RA}.
#[global] Instance own_frac_valid g q : Observe [| (q ≤ 1)%Qp |] (own g q).
Proof. GUARD. apply observe_pure, own_obs. by iIntros (?). Qed.
#[global] Instance own_2_frac_valid g q p :
Observe2 [| (q + p ≤ 1)%Qp |] (own g q) (own g p).
Proof. GUARD. apply observe_2_pure, own_2_obs. by iIntros (?). Qed.
Lemma own_2_frac_1_exclusive_l g q : Observe2 False (own g 1%Qp) (own g q).
Proof. by apply _. Abort.
Lemma own_2_frac_1_exclusive_r g q : Observe2 False (own g q) (own g 1%Qp).
Proof. by apply _. Abort.
End frac.
Import iris.algebra.frac.
Notation RA := fracR.
Context `{!HasOwn RA, !HasOwnValid RA}.
#[global] Instance own_frac_valid g q : Observe [| (q ≤ 1)%Qp |] (own g q).
Proof. GUARD. apply observe_pure, own_obs. by iIntros (?). Qed.
#[global] Instance own_2_frac_valid g q p :
Observe2 [| (q + p ≤ 1)%Qp |] (own g q) (own g p).
Proof. GUARD. apply observe_2_pure, own_2_obs. by iIntros (?). Qed.
Lemma own_2_frac_1_exclusive_l g q : Observe2 False (own g 1%Qp) (own g q).
Proof. by apply _. Abort.
Lemma own_2_frac_1_exclusive_r g q : Observe2 False (own g q) (own g 1%Qp).
Proof. by apply _. Abort.
End frac.
iris.algebra.agree
Section agree.
Import iris.algebra.agree.
Context {A : ofe}. Notation RA := (agreeR A).
Context `{!HasOwn RA, !HasOwnValid RA}.
Import iris.algebra.agree.
Context {A : ofe}. Notation RA := (agreeR A).
Context `{!HasOwn RA, !HasOwnValid RA}.
Higher cost than the following to_agree variants.
#[global] Instance own_agreeI' g x y :
Observe2 (x ≡ y) (own g x) (own g y) | 100.
Proof. GUARD. apply own_2_obs, agree_validI. Qed.
#[global] Instance own_agree' g x y `{!Discrete x} :
Observe2 [| x ≡ y |] (own g x) (own g y) | 100.
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite agree_validI discrete_eq.
Qed.
#[global] Instance own_agreeI g a b :
Observe2 (a ≡ b) (own g (to_agree a)) (own g (to_agree b)).
Proof. GUARD. apply own_2_obs. by rewrite agree_validI agree_equivI. Qed.
#[global] Instance own_agree g a b `{!Discrete a} :
Observe2 [| a ≡ b |] (own g (to_agree a)) (own g (to_agree b)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite agree_validI agree_equivI discrete_eq.
Qed.
#[global] Instance own_agree_L `{!LeibnizEquiv A} g a b `{!Discrete a} :
Observe2 [| a = b |] (own g (to_agree a)) (own g (to_agree b)).
Proof. GUARD. unfold_leibniz. rewrite -(inj_iff to_agree). apply _. Qed.
End agree.
Section view.
Import iris.algebra.view.
Context {A B} (rel : view_rel A B). Notation RA := (viewR rel).
Context `{!HasOwn RA, !HasOwnValid RA}.
#[global] Instance own_view_auth_frac_valid g q a :
Observe [| q ≤ 1 |]%Qp (own g (●V{#q} a)).
Proof.
GUARD. apply observe_pure, own_obs, view_auth_frac_validI_frac.
Qed.
#[global] Instance own_view_auth_frac_valid_2 g q1 q2 a1 a2 :
Observe2 [| q1 + q2 ≤ 1 |]%Qp (own g (●V{#q1} a1)) (own g (●V{#q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs, view_auth_frac_validI_frac_2.
Qed.
#[global] Instance own_view_auth_frac_valid_exclusive_l g q a1 a2 :
Observe2 False (own g (●V a1)) (own g (●V{#q} a2)).
Proof.
GUARD. iIntros "A1 A2".
by iDestruct (own_view_auth_frac_valid_2 with "A1 A2") as %?%Qp.not_add_le_l.
Qed.
#[global] Instance own_view_auth_frac_valid_exclusive_r g q a1 a2 :
Observe2 False (own g (●V{#q} a1)) (own g (●V a2)).
Proof. GUARD. symmetry. apply _. Qed.
#[global] Instance own_view_auth_agreeI g q1 q2 a1 a2 :
Observe2 (a1 ≡ a2) (own g (●V{#q1} a1)) (own g (●V{#q2} a2)).
Proof. GUARD. apply own_2_obs, view_auth_dfrac_op_invI. Qed.
#[global] Instance own_view_auth_agree g q1 q2 a1 a2 `{!Discrete a1} :
Observe2 [| a1 ≡ a2 |] (own g (●V{#q1} a1)) (own g (●V{#q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite view_auth_dfrac_op_invI discrete_eq.
Qed.
#[global] Instance own_view_auth_agree_L `{!LeibnizEquiv A} g q1 q2 a1 a2
`{!Discrete a1} :
Observe2 [| a1 = a2 |] (own g (●V{#q1} a1)) (own g (●V{#q2} a2)).
Proof. GUARD. unfold_leibniz. apply _. Qed.
Import fractional.
#[global] Instance view_auth_frac g a :
Fractional (fun q => own g (●V{#q} a)).
Proof.
GUARD. intros q1 q2. split'.
- by iIntros "[$ $]".
- iIntros "[A1 A2]". by iCombine "A1 A2" as "$".
Qed.
End view.
Observe2 (x ≡ y) (own g x) (own g y) | 100.
Proof. GUARD. apply own_2_obs, agree_validI. Qed.
#[global] Instance own_agree' g x y `{!Discrete x} :
Observe2 [| x ≡ y |] (own g x) (own g y) | 100.
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite agree_validI discrete_eq.
Qed.
#[global] Instance own_agreeI g a b :
Observe2 (a ≡ b) (own g (to_agree a)) (own g (to_agree b)).
Proof. GUARD. apply own_2_obs. by rewrite agree_validI agree_equivI. Qed.
#[global] Instance own_agree g a b `{!Discrete a} :
Observe2 [| a ≡ b |] (own g (to_agree a)) (own g (to_agree b)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite agree_validI agree_equivI discrete_eq.
Qed.
#[global] Instance own_agree_L `{!LeibnizEquiv A} g a b `{!Discrete a} :
Observe2 [| a = b |] (own g (to_agree a)) (own g (to_agree b)).
Proof. GUARD. unfold_leibniz. rewrite -(inj_iff to_agree). apply _. Qed.
End agree.
Section view.
Import iris.algebra.view.
Context {A B} (rel : view_rel A B). Notation RA := (viewR rel).
Context `{!HasOwn RA, !HasOwnValid RA}.
#[global] Instance own_view_auth_frac_valid g q a :
Observe [| q ≤ 1 |]%Qp (own g (●V{#q} a)).
Proof.
GUARD. apply observe_pure, own_obs, view_auth_frac_validI_frac.
Qed.
#[global] Instance own_view_auth_frac_valid_2 g q1 q2 a1 a2 :
Observe2 [| q1 + q2 ≤ 1 |]%Qp (own g (●V{#q1} a1)) (own g (●V{#q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs, view_auth_frac_validI_frac_2.
Qed.
#[global] Instance own_view_auth_frac_valid_exclusive_l g q a1 a2 :
Observe2 False (own g (●V a1)) (own g (●V{#q} a2)).
Proof.
GUARD. iIntros "A1 A2".
by iDestruct (own_view_auth_frac_valid_2 with "A1 A2") as %?%Qp.not_add_le_l.
Qed.
#[global] Instance own_view_auth_frac_valid_exclusive_r g q a1 a2 :
Observe2 False (own g (●V{#q} a1)) (own g (●V a2)).
Proof. GUARD. symmetry. apply _. Qed.
#[global] Instance own_view_auth_agreeI g q1 q2 a1 a2 :
Observe2 (a1 ≡ a2) (own g (●V{#q1} a1)) (own g (●V{#q2} a2)).
Proof. GUARD. apply own_2_obs, view_auth_dfrac_op_invI. Qed.
#[global] Instance own_view_auth_agree g q1 q2 a1 a2 `{!Discrete a1} :
Observe2 [| a1 ≡ a2 |] (own g (●V{#q1} a1)) (own g (●V{#q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite view_auth_dfrac_op_invI discrete_eq.
Qed.
#[global] Instance own_view_auth_agree_L `{!LeibnizEquiv A} g q1 q2 a1 a2
`{!Discrete a1} :
Observe2 [| a1 = a2 |] (own g (●V{#q1} a1)) (own g (●V{#q2} a2)).
Proof. GUARD. unfold_leibniz. apply _. Qed.
Import fractional.
#[global] Instance view_auth_frac g a :
Fractional (fun q => own g (●V{#q} a)).
Proof.
GUARD. intros q1 q2. split'.
- by iIntros "[$ $]".
- iIntros "[A1 A2]". by iCombine "A1 A2" as "$".
Qed.
End view.
iris.algebra.auth
Section auth.
Import iris.algebra.auth.
Context {A : ucmra}. Notation RA := (authR A).
Context `{!HasOwn RA, !HasOwnValid RA}.
#[global] Instance own_auth_frac_valid g q a :
Observe [| q ≤ 1 |]%Qp (own g (●{#q} a)).
Proof.
GUARD. apply observe_pure, own_obs.
by rewrite auth_auth_frac_validI bi.and_elim_l.
Qed.
#[global] Instance own_auth_frac_valid_2 g q1 q2 a1 a2 :
Observe2 [| q1 + q2 ≤ 1 |]%Qp (own g (●{#q1} a1)) (own g (●{#q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite auth_auth_frac_op_validI bi.and_elim_l.
Qed.
Lemma test g q a1 a2 :
Observe2 [| 1 + q ≤ 1 |]%Qp (own g (● a1)) (own g (●{#q} a2)).
Proof. by apply _. Abort.
#[global] Instance own_auth_frac_valid_exclusive_l g q a1 a2 :
Observe2 False (own g (● a1)) (own g (●{#q} a2)).
Proof.
GUARD. iIntros "A1 A2".
by iDestruct (own_auth_frac_valid_2 with "A1 A2") as %?%Qp.not_add_le_l.
Qed.
Lemma test g q a1 a2 : Observe2 False (own g (●{#1} a1)) (own g (●{#q} a2)).
Proof. by apply _. Abort.
#[global] Instance own_auth_frac_valid_exclusive_r g q a1 a2 :
Observe2 False (own g (●{#q} a1)) (own g (● a2)).
Proof. GUARD. symmetry. apply _. Qed.
Lemma test g q a1 a2 : Observe2 False (own g (●{#q} a1)) (own g (● a2)).
Proof. by apply _. Abort.
#[global] Instance own_auth_agreeI g q1 q2 a1 a2 :
Observe2 (a1 ≡ a2) (own g (●{#q1} a1)) (own g (●{#q2} a2)).
Proof.
GUARD. apply own_2_obs.
by rewrite auth_auth_frac_op_validI bi.and_elim_r bi.and_elim_l.
Qed.
Lemma test g q a1 a2 : Observe2 (a1 ≡ a2) (own g (● a1)) (own g (●{#q} a2)).
Proof. by apply _. Abort.
#[global] Instance own_auth_agree g q1 q2 a1 a2 `{!Discrete a1} :
Observe2 [| a1 ≡ a2 |] (own g (●{#q1} a1)) (own g (●{#q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite auth_auth_frac_op_validI bi.and_elim_r bi.and_elim_l discrete_eq.
Qed.
#[global] Instance own_auth_agree_L `{!LeibnizEquiv A} g q1 q2 a1 a2
`{!Discrete a1} :
Observe2 [| a1 = a2 |] (own g (●{#q1} a1)) (own g (●{#q2} a2)).
Proof. GUARD. unfold_leibniz. apply _. Qed.
#[global] Instance auth_both_includedI' g q a b :
Observe2 (b ≼ a) (own g (●{#q} a)) (own g (◯ b)).
Proof.
GUARD. apply own_2_obs.
by rewrite auth_both_frac_validI bi.and_elim_r bi.and_elim_l.
Qed.
#[global] Instance auth_both_included' `{!CmraDiscrete A} g q a b :
Observe2 [| b ≼ a |] (own g (●{#q} a)) (own g (◯ b)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
rewrite auth_both_frac_validI_discrete. f_equiv=>?. tauto.
Qed.
Import fractional.
#[global] Instance auth_auth_frac g a :
Fractional (fun q => own g (●{#q} a)).
Proof. GUARD. rewrite /auth_auth. apply _. Qed.
End auth.
Import iris.algebra.auth.
Context {A : ucmra}. Notation RA := (authR A).
Context `{!HasOwn RA, !HasOwnValid RA}.
#[global] Instance own_auth_frac_valid g q a :
Observe [| q ≤ 1 |]%Qp (own g (●{#q} a)).
Proof.
GUARD. apply observe_pure, own_obs.
by rewrite auth_auth_frac_validI bi.and_elim_l.
Qed.
#[global] Instance own_auth_frac_valid_2 g q1 q2 a1 a2 :
Observe2 [| q1 + q2 ≤ 1 |]%Qp (own g (●{#q1} a1)) (own g (●{#q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite auth_auth_frac_op_validI bi.and_elim_l.
Qed.
Lemma test g q a1 a2 :
Observe2 [| 1 + q ≤ 1 |]%Qp (own g (● a1)) (own g (●{#q} a2)).
Proof. by apply _. Abort.
#[global] Instance own_auth_frac_valid_exclusive_l g q a1 a2 :
Observe2 False (own g (● a1)) (own g (●{#q} a2)).
Proof.
GUARD. iIntros "A1 A2".
by iDestruct (own_auth_frac_valid_2 with "A1 A2") as %?%Qp.not_add_le_l.
Qed.
Lemma test g q a1 a2 : Observe2 False (own g (●{#1} a1)) (own g (●{#q} a2)).
Proof. by apply _. Abort.
#[global] Instance own_auth_frac_valid_exclusive_r g q a1 a2 :
Observe2 False (own g (●{#q} a1)) (own g (● a2)).
Proof. GUARD. symmetry. apply _. Qed.
Lemma test g q a1 a2 : Observe2 False (own g (●{#q} a1)) (own g (● a2)).
Proof. by apply _. Abort.
#[global] Instance own_auth_agreeI g q1 q2 a1 a2 :
Observe2 (a1 ≡ a2) (own g (●{#q1} a1)) (own g (●{#q2} a2)).
Proof.
GUARD. apply own_2_obs.
by rewrite auth_auth_frac_op_validI bi.and_elim_r bi.and_elim_l.
Qed.
Lemma test g q a1 a2 : Observe2 (a1 ≡ a2) (own g (● a1)) (own g (●{#q} a2)).
Proof. by apply _. Abort.
#[global] Instance own_auth_agree g q1 q2 a1 a2 `{!Discrete a1} :
Observe2 [| a1 ≡ a2 |] (own g (●{#q1} a1)) (own g (●{#q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite auth_auth_frac_op_validI bi.and_elim_r bi.and_elim_l discrete_eq.
Qed.
#[global] Instance own_auth_agree_L `{!LeibnizEquiv A} g q1 q2 a1 a2
`{!Discrete a1} :
Observe2 [| a1 = a2 |] (own g (●{#q1} a1)) (own g (●{#q2} a2)).
Proof. GUARD. unfold_leibniz. apply _. Qed.
#[global] Instance auth_both_includedI' g q a b :
Observe2 (b ≼ a) (own g (●{#q} a)) (own g (◯ b)).
Proof.
GUARD. apply own_2_obs.
by rewrite auth_both_frac_validI bi.and_elim_r bi.and_elim_l.
Qed.
#[global] Instance auth_both_included' `{!CmraDiscrete A} g q a b :
Observe2 [| b ≼ a |] (own g (●{#q} a)) (own g (◯ b)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
rewrite auth_both_frac_validI_discrete. f_equiv=>?. tauto.
Qed.
Import fractional.
#[global] Instance auth_auth_frac g a :
Fractional (fun q => own g (●{#q} a)).
Proof. GUARD. rewrite /auth_auth. apply _. Qed.
End auth.
bedrock.lang.algebra.excl_auth, iris.algebra.lib.excl_auth
Section excl_auth.
Import bedrock.lang.algebra.excl_auth.
Context {A : ofe}. Notation RA := (excl_authR A).
Context `{!HasOwn RA, !HasOwnValid RA}.
Import bedrock.lang.algebra.excl_auth.
Context {A : ofe}. Notation RA := (excl_authR A).
Context `{!HasOwn RA, !HasOwnValid RA}.
Deal with the fact that ●E a is TC opaque.
#[global] Instance observe_own_excl_auth Q g a :
Observe Q (own g (●E{1} a)) → Observe Q (own g (●E a)).
Proof. GUARD. by rewrite excl_auth_auth_frac. Qed.
#[global] Instance observe_2_own_excl_auth_l Q g a P :
Observe2 Q (own g (●E{1} a)) P → Observe2 Q (own g (●E a)) P.
Proof. GUARD. by rewrite excl_auth_auth_frac. Qed.
#[global] Instance observe_2_own_excl_auth_r Q g a P :
Observe2 Q P (own g (●E{1} a)) → Observe2 Q P (own g (●E a)).
Proof. GUARD. by rewrite excl_auth_auth_frac. Qed.
#[global] Instance own_excl_auth_frac_valid g q a :
Observe [| q ≤ 1 |]%Qp (own g (●E{q} a)).
Proof.
GUARD. apply observe_pure, own_obs.
by rewrite excl_auth_frac_validI.
Qed.
#[global] Instance own_excl_auth_frac_valid_2 g q1 q2 a1 a2 :
Observe2 [| q1 + q2 ≤ 1 |]%Qp (own g (●E{q1} a1)) (own g (●E{q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite excl_auth_auth_frac_op_validI bi.and_elim_l.
Qed.
Lemma test g q a1 a2 :
Observe2 [| 1 + q ≤ 1 |]%Qp (own g (●E a1)) (own g (●E{q} a2)).
Proof. by apply _. Abort.
Lemma test g q a1 a2 :
Observe2 [| q + 1 ≤ 1 |]%Qp (own g (●E{q} a1)) (own g (●E a2)).
Proof. by apply _. Abort.
#[global] Instance own_excl_auth_frac_valid_exclusive_l g q a1 a2 :
Observe2 False (own g (●E{1} a1)) (own g (●E{q} a2)).
Proof.
GUARD. iIntros "A1 A2".
by iDestruct (own_excl_auth_frac_valid_2 with "A1 A2") as %?%Qp.not_add_le_l.
Qed.
Lemma test g q a1 a2 : Observe2 False (own g (●E a1)) (own g (●E{q} a2)).
Proof. by apply _. Abort.
#[global] Instance own_excl_auth_frac_valid_exclusive_r g q a1 a2 :
Observe2 False (own g (●E{q} a1)) (own g (●E{1} a2)).
Proof. GUARD. symmetry. apply _. Qed.
Lemma test g q a1 a2 : Observe2 False (own g (●E{q} a1)) (own g (●E a2)).
Proof. by apply _. Abort.
Lemma test g a1 a2 : Observe2 False (own g (●E a1)) (own g (●E a2)).
Proof. by apply _. Abort.
#[global] Instance own_excl_auth_frac_agreeI g q1 q2 a1 a2 :
Observe2 (a1 ≡ a2) (own g (●E{q1} a1)) (own g (●E{q2} a2)).
Proof. GUARD. apply own_2_obs, excl_auth_frac_op_invI. Qed.
Lemma test g q a1 a2 : Observe2 (a1 ≡ a2) (own g (●E a1)) (own g (●E{q} a2)).
Proof. by apply _. Abort.
#[global] Instance own_excl_auth_frac_agree g q1 q2 a1 a2 `{!Discrete a1} :
Observe2 [| a1 ≡ a2 |] (own g (●E{q1} a1)) (own g (●E{q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite excl_auth_frac_op_invI discrete_eq.
Qed.
#[global] Instance own_excl_auth_frac_agree_L `{!LeibnizEquiv A} g q1 q2 a1 a2
`{!Discrete a1} :
Observe2 [| a1 = a2 |] (own g (●E{q1} a1)) (own g (●E{q2} a2)).
Proof. GUARD. unfold_leibniz. apply _. Qed.
#[global] Instance own_excl_auth_agreeI g q a b :
Observe2 (a ≡ b) (own g (●E{q} a)) (own g (◯E b)).
Proof. GUARD. apply own_2_obs, excl_auth_frac_agreeI. Qed.
Lemma test g a b : Observe2 (a ≡ b) (own g (●E a)) (own g (◯E b)).
Proof. by apply _. Abort.
#[global] Instance own_excl_auth_agree g q a b `{!Discrete a} :
Observe2 [| a ≡ b |] (own g (●E{q} a)) (own g (◯E b)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite excl_auth_frac_agreeI discrete_eq.
Qed.
#[global] Instance own_excl_auth_agree_L `{!LeibnizEquiv A} g q a b
`{!Discrete a} :
Observe2 [| a = b |] (own g (●E{q} a)) (own g (◯E b)).
Proof. GUARD. unfold_leibniz. apply _. Qed.
#[global] Instance own_excl_auth_frag_exclusive g b1 b2 :
Observe2 False (own g (◯E b1)) (own g (◯E b2)).
Proof. GUARD. apply own_2_obs, excl_auth_frag_validI_op_1_l. Qed.
Observe Q (own g (●E{1} a)) → Observe Q (own g (●E a)).
Proof. GUARD. by rewrite excl_auth_auth_frac. Qed.
#[global] Instance observe_2_own_excl_auth_l Q g a P :
Observe2 Q (own g (●E{1} a)) P → Observe2 Q (own g (●E a)) P.
Proof. GUARD. by rewrite excl_auth_auth_frac. Qed.
#[global] Instance observe_2_own_excl_auth_r Q g a P :
Observe2 Q P (own g (●E{1} a)) → Observe2 Q P (own g (●E a)).
Proof. GUARD. by rewrite excl_auth_auth_frac. Qed.
#[global] Instance own_excl_auth_frac_valid g q a :
Observe [| q ≤ 1 |]%Qp (own g (●E{q} a)).
Proof.
GUARD. apply observe_pure, own_obs.
by rewrite excl_auth_frac_validI.
Qed.
#[global] Instance own_excl_auth_frac_valid_2 g q1 q2 a1 a2 :
Observe2 [| q1 + q2 ≤ 1 |]%Qp (own g (●E{q1} a1)) (own g (●E{q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite excl_auth_auth_frac_op_validI bi.and_elim_l.
Qed.
Lemma test g q a1 a2 :
Observe2 [| 1 + q ≤ 1 |]%Qp (own g (●E a1)) (own g (●E{q} a2)).
Proof. by apply _. Abort.
Lemma test g q a1 a2 :
Observe2 [| q + 1 ≤ 1 |]%Qp (own g (●E{q} a1)) (own g (●E a2)).
Proof. by apply _. Abort.
#[global] Instance own_excl_auth_frac_valid_exclusive_l g q a1 a2 :
Observe2 False (own g (●E{1} a1)) (own g (●E{q} a2)).
Proof.
GUARD. iIntros "A1 A2".
by iDestruct (own_excl_auth_frac_valid_2 with "A1 A2") as %?%Qp.not_add_le_l.
Qed.
Lemma test g q a1 a2 : Observe2 False (own g (●E a1)) (own g (●E{q} a2)).
Proof. by apply _. Abort.
#[global] Instance own_excl_auth_frac_valid_exclusive_r g q a1 a2 :
Observe2 False (own g (●E{q} a1)) (own g (●E{1} a2)).
Proof. GUARD. symmetry. apply _. Qed.
Lemma test g q a1 a2 : Observe2 False (own g (●E{q} a1)) (own g (●E a2)).
Proof. by apply _. Abort.
Lemma test g a1 a2 : Observe2 False (own g (●E a1)) (own g (●E a2)).
Proof. by apply _. Abort.
#[global] Instance own_excl_auth_frac_agreeI g q1 q2 a1 a2 :
Observe2 (a1 ≡ a2) (own g (●E{q1} a1)) (own g (●E{q2} a2)).
Proof. GUARD. apply own_2_obs, excl_auth_frac_op_invI. Qed.
Lemma test g q a1 a2 : Observe2 (a1 ≡ a2) (own g (●E a1)) (own g (●E{q} a2)).
Proof. by apply _. Abort.
#[global] Instance own_excl_auth_frac_agree g q1 q2 a1 a2 `{!Discrete a1} :
Observe2 [| a1 ≡ a2 |] (own g (●E{q1} a1)) (own g (●E{q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite excl_auth_frac_op_invI discrete_eq.
Qed.
#[global] Instance own_excl_auth_frac_agree_L `{!LeibnizEquiv A} g q1 q2 a1 a2
`{!Discrete a1} :
Observe2 [| a1 = a2 |] (own g (●E{q1} a1)) (own g (●E{q2} a2)).
Proof. GUARD. unfold_leibniz. apply _. Qed.
#[global] Instance own_excl_auth_agreeI g q a b :
Observe2 (a ≡ b) (own g (●E{q} a)) (own g (◯E b)).
Proof. GUARD. apply own_2_obs, excl_auth_frac_agreeI. Qed.
Lemma test g a b : Observe2 (a ≡ b) (own g (●E a)) (own g (◯E b)).
Proof. by apply _. Abort.
#[global] Instance own_excl_auth_agree g q a b `{!Discrete a} :
Observe2 [| a ≡ b |] (own g (●E{q} a)) (own g (◯E b)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite excl_auth_frac_agreeI discrete_eq.
Qed.
#[global] Instance own_excl_auth_agree_L `{!LeibnizEquiv A} g q a b
`{!Discrete a} :
Observe2 [| a = b |] (own g (●E{q} a)) (own g (◯E b)).
Proof. GUARD. unfold_leibniz. apply _. Qed.
#[global] Instance own_excl_auth_frag_exclusive g b1 b2 :
Observe2 False (own g (◯E b1)) (own g (◯E b2)).
Proof. GUARD. apply own_2_obs, excl_auth_frag_validI_op_1_l. Qed.
Import fractional.
#[global] Instance own_excl_auth_auth_frac g a :
Fractional (fun q => own g (●E{q} a)).
Proof.
GUARD. intros q1 q2. split'.
- by iIntros "[$ $]".
- iIntros "[A1 A2]". by iCombine "A1 A2" as "$".
Qed.
End excl_auth.
#[global] Instance own_excl_auth_auth_frac g a :
Fractional (fun q => own g (●E{q} a)).
Proof.
GUARD. intros q1 q2. split'.
- by iIntros "[$ $]".
- iIntros "[A1 A2]". by iCombine "A1 A2" as "$".
Qed.
End excl_auth.
bedrock.lang.algebra.frac_auth, iris.algebra.lib.frac_auth
Section frac_auth.
Import bedrock.lang.algebra.frac_auth.
Context {A : cmra}. Notation RA := (frac_authR A).
Context `{!HasOwn RA, !HasOwnValid RA}.
Import bedrock.lang.algebra.frac_auth.
Context {A : cmra}. Notation RA := (frac_authR A).
Context `{!HasOwn RA, !HasOwnValid RA}.
Deal with the fact that ●F a is TC opaque.
#[global] Instance observe_own_frac_auth Q g a :
Observe Q (own g (●F{1} a)) → Observe Q (own g (●F a)).
Proof. GUARD. by rewrite frac_auth_auth_auth_frac. Qed.
#[global] Instance observe_2_own_frac_auth_l Q g a P :
Observe2 Q (own g (●F{1} a)) P → Observe2 Q (own g (●F a)) P.
Proof. GUARD. by rewrite frac_auth_auth_auth_frac. Qed.
#[global] Instance observe_2_own_frac_auth_r Q g a P :
Observe2 Q P (own g (●F{1} a)) → Observe2 Q P (own g (●F a)).
Proof. GUARD. by rewrite frac_auth_auth_auth_frac. Qed.
Observe Q (own g (●F{1} a)) → Observe Q (own g (●F a)).
Proof. GUARD. by rewrite frac_auth_auth_auth_frac. Qed.
#[global] Instance observe_2_own_frac_auth_l Q g a P :
Observe2 Q (own g (●F{1} a)) P → Observe2 Q (own g (●F a)) P.
Proof. GUARD. by rewrite frac_auth_auth_auth_frac. Qed.
#[global] Instance observe_2_own_frac_auth_r Q g a P :
Observe2 Q P (own g (●F{1} a)) → Observe2 Q P (own g (●F a)).
Proof. GUARD. by rewrite frac_auth_auth_auth_frac. Qed.
Fractions are valid.
#[global] Instance own_frac_auth_auth_frac_valid g q a :
Observe [| q ≤ 1 |]%Qp (own g (●F{q} a)).
Proof.
GUARD. apply observe_pure, own_obs.
rewrite frac_auth_auth_frac_validI. by iIntros "[$ _]".
Qed.
#[global] Instance own_frac_auth_auth_frac_valid_2 g q1 q2 a1 a2 :
Observe2 [| q1 + q2 ≤ 1 |]%Qp (own g (●F{q1} a1)) (own g (●F{q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
rewrite frac_auth_auth_frac_op_validI. by iIntros "[$ _]".
Qed.
Lemma test g q a1 a2 :
Observe2 [| 1 + q ≤ 1 |]%Qp (own g (●F a1)) (own g (●F{q} a2)).
Proof. by apply _. Abort.
Lemma test g q a1 a2 :
Observe2 [| q + 1 ≤ 1 |]%Qp (own g (●F{q} a1)) (own g (●F a2)).
Proof. by apply _. Abort.
#[global] Instance own_frac_auth_auth_frac_exclusive_l g q a1 a2 :
Observe2 False (own g (●F{1} a1)) (own g (●F{q} a2)).
Proof.
GUARD. iIntros "A1 A2".
by iDestruct (own_frac_auth_auth_frac_valid_2 with "A1 A2")
as %?%Qp.not_add_le_l.
Qed.
Lemma test g q a1 a2 : Observe2 False (own g (●F a1)) (own g (●F{q} a2)).
Proof. by apply _. Abort.
#[global] Instance own_frac_auth_auth_frac_exclusive_r g q a1 a2 :
Observe2 False (own g (●F{q} a1)) (own g (●F{1} a2)).
Proof. GUARD. symmetry. apply _. Qed.
Lemma test g q a1 a2 : Observe2 False (own g (●F{q} a1)) (own g (●F a2)).
Proof. by apply _. Abort.
Lemma test g a1 a2 : Observe2 False (own g (●F a1)) (own g (●F a2)).
Proof. by apply _. Abort.
#[global] Instance own_frac_auth_frag_frac_valid g q a :
Observe [| q ≤ 1 |]%Qp (own g (◯F{q} a)).
Proof.
GUARD. apply observe_pure, own_obs.
rewrite frac_auth_frag_validI. by iIntros "[$ _]".
Qed.
#[global] Instance own_frac_auth_frag_frac_valid_2 g q1 q2 a1 a2 :
Observe2 [| q1 + q2 ≤ 1 |]%Qp (own g (◯F{q1} a1)) (own g (◯F{q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
rewrite frac_auth_frag_validI. by iIntros "[$ _]".
Qed.
Lemma test g q a1 a2 :
Observe2 [| 1 + q ≤ 1 |]%Qp (own g (◯F a1)) (own g (◯F{q} a2)).
Proof. by apply _. Abort.
Lemma test g q a1 a2 :
Observe2 [| q + 1 ≤ 1 |]%Qp (own g (◯F{q} a1)) (own g (◯F a2)).
Proof. by apply _. Abort.
#[global] Instance own_frac_auth_frag_frac_exclusive_l g q a1 a2 :
Observe2 False (own g (◯F{1} a1)) (own g (◯F{q} a2)).
Proof.
GUARD. iIntros "A1 A2".
by iDestruct (own_frac_auth_frag_frac_valid_2 with "A1 A2")
as %?%Qp.not_add_le_l.
Qed.
Lemma test g q a1 a2 : Observe2 False (own g (◯F a1)) (own g (◯F{q} a2)).
Proof. by apply _. Abort.
#[global] Instance own_frac_auth_frag_frac_exclusive_r g q a1 a2 :
Observe2 False (own g (◯F{q} a1)) (own g (◯F{1} a2)).
Proof. GUARD. symmetry. apply _. Qed.
Lemma test g q a1 a2 : Observe2 False (own g (◯F{q} a1)) (own g (◯F a2)).
Proof. by apply _. Abort.
Lemma test g a1 a2 : Observe2 False (own g (◯F a1)) (own g (◯F a2)).
Proof. by apply _. Abort.
Observe [| q ≤ 1 |]%Qp (own g (●F{q} a)).
Proof.
GUARD. apply observe_pure, own_obs.
rewrite frac_auth_auth_frac_validI. by iIntros "[$ _]".
Qed.
#[global] Instance own_frac_auth_auth_frac_valid_2 g q1 q2 a1 a2 :
Observe2 [| q1 + q2 ≤ 1 |]%Qp (own g (●F{q1} a1)) (own g (●F{q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
rewrite frac_auth_auth_frac_op_validI. by iIntros "[$ _]".
Qed.
Lemma test g q a1 a2 :
Observe2 [| 1 + q ≤ 1 |]%Qp (own g (●F a1)) (own g (●F{q} a2)).
Proof. by apply _. Abort.
Lemma test g q a1 a2 :
Observe2 [| q + 1 ≤ 1 |]%Qp (own g (●F{q} a1)) (own g (●F a2)).
Proof. by apply _. Abort.
#[global] Instance own_frac_auth_auth_frac_exclusive_l g q a1 a2 :
Observe2 False (own g (●F{1} a1)) (own g (●F{q} a2)).
Proof.
GUARD. iIntros "A1 A2".
by iDestruct (own_frac_auth_auth_frac_valid_2 with "A1 A2")
as %?%Qp.not_add_le_l.
Qed.
Lemma test g q a1 a2 : Observe2 False (own g (●F a1)) (own g (●F{q} a2)).
Proof. by apply _. Abort.
#[global] Instance own_frac_auth_auth_frac_exclusive_r g q a1 a2 :
Observe2 False (own g (●F{q} a1)) (own g (●F{1} a2)).
Proof. GUARD. symmetry. apply _. Qed.
Lemma test g q a1 a2 : Observe2 False (own g (●F{q} a1)) (own g (●F a2)).
Proof. by apply _. Abort.
Lemma test g a1 a2 : Observe2 False (own g (●F a1)) (own g (●F a2)).
Proof. by apply _. Abort.
#[global] Instance own_frac_auth_frag_frac_valid g q a :
Observe [| q ≤ 1 |]%Qp (own g (◯F{q} a)).
Proof.
GUARD. apply observe_pure, own_obs.
rewrite frac_auth_frag_validI. by iIntros "[$ _]".
Qed.
#[global] Instance own_frac_auth_frag_frac_valid_2 g q1 q2 a1 a2 :
Observe2 [| q1 + q2 ≤ 1 |]%Qp (own g (◯F{q1} a1)) (own g (◯F{q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
rewrite frac_auth_frag_validI. by iIntros "[$ _]".
Qed.
Lemma test g q a1 a2 :
Observe2 [| 1 + q ≤ 1 |]%Qp (own g (◯F a1)) (own g (◯F{q} a2)).
Proof. by apply _. Abort.
Lemma test g q a1 a2 :
Observe2 [| q + 1 ≤ 1 |]%Qp (own g (◯F{q} a1)) (own g (◯F a2)).
Proof. by apply _. Abort.
#[global] Instance own_frac_auth_frag_frac_exclusive_l g q a1 a2 :
Observe2 False (own g (◯F{1} a1)) (own g (◯F{q} a2)).
Proof.
GUARD. iIntros "A1 A2".
by iDestruct (own_frac_auth_frag_frac_valid_2 with "A1 A2")
as %?%Qp.not_add_le_l.
Qed.
Lemma test g q a1 a2 : Observe2 False (own g (◯F a1)) (own g (◯F{q} a2)).
Proof. by apply _. Abort.
#[global] Instance own_frac_auth_frag_frac_exclusive_r g q a1 a2 :
Observe2 False (own g (◯F{q} a1)) (own g (◯F{1} a2)).
Proof. GUARD. symmetry. apply _. Qed.
Lemma test g q a1 a2 : Observe2 False (own g (◯F{q} a1)) (own g (◯F a2)).
Proof. by apply _. Abort.
Lemma test g a1 a2 : Observe2 False (own g (◯F a1)) (own g (◯F a2)).
Proof. by apply _. Abort.
Element is valid
#[global] Instance own_frac_auth_auth_valid g q a :
Observe (✓ a) (own g (●F{q} a)).
Proof.
GUARD. apply own_obs.
rewrite frac_auth_auth_frac_validI. by iIntros "[_ $]".
Qed.
Lemma test g a : Observe (✓ a) (own g (●F a)).
Proof. by apply _. Abort.
#[global] Instance own_frac_auth_frag_valid g q a :
Observe (✓ a) (own g (◯F{q} a)).
Proof.
GUARD. apply own_obs.
rewrite frac_auth_frag_validI. by iIntros "[_ $]".
Qed.
Lemma test g a : Observe (✓ a) (own g (◯F a)).
Proof. by apply _. Abort.
Observe (✓ a) (own g (●F{q} a)).
Proof.
GUARD. apply own_obs.
rewrite frac_auth_auth_frac_validI. by iIntros "[_ $]".
Qed.
Lemma test g a : Observe (✓ a) (own g (●F a)).
Proof. by apply _. Abort.
#[global] Instance own_frac_auth_frag_valid g q a :
Observe (✓ a) (own g (◯F{q} a)).
Proof.
GUARD. apply own_obs.
rewrite frac_auth_frag_validI. by iIntros "[_ $]".
Qed.
Lemma test g a : Observe (✓ a) (own g (◯F a)).
Proof. by apply _. Abort.
Agreement
#[global] Instance own_frac_auth_frac_agreeI g q1 q2 a1 a2 :
Observe2 (a1 ≡ a2) (own g (●F{q1} a1)) (own g (●F{q2} a2)).
Proof. GUARD. apply own_2_obs, frac_auth_auth_frac_op_invI. Qed.
Lemma test g q a1 a2 : Observe2 (a1 ≡ a2) (own g (●F a1)) (own g (●F{q} a2)).
Proof. by apply _. Abort.
#[global] Instance own_frac_auth_frac_agree g q1 q2 a1 a2 `{!Discrete a1} :
Observe2 [| a1 ≡ a2 |] (own g (●F{q1} a1)) (own g (●F{q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite frac_auth_auth_frac_op_invI discrete_eq.
Qed.
#[global] Instance own_frac_auth_frac_agree_L `{!LeibnizEquiv A} g q1 q2 a1 a2
`{!Discrete a1} :
Observe2 [| a1 = a2 |] (own g (●F{q1} a1)) (own g (●F{q2} a2)).
Proof. GUARD. unfold_leibniz. apply _. Qed.
#[global] Instance own_frac_auth_agreeI g q a b :
Observe2 (a ≡ b) (own g (●F{q} a)) (own g (◯F b)).
Proof. GUARD. apply own_2_obs, frac_auth_auth_frac_agreeI. Qed.
Lemma test g a b : Observe2 (a ≡ b) (own g (●F a)) (own g (◯F b)).
Proof. by apply _. Abort.
#[global] Instance own_frac_auth_agree g q a b `{!Discrete a} :
Observe2 [| a ≡ b |] (own g (●F{q} a)) (own g (◯F b)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite frac_auth_auth_frac_agreeI discrete_eq.
Qed.
#[global] Instance own_frac_auth_agree_L `{!LeibnizEquiv A} g q a b
`{!Discrete a} :
Observe2 [| a = b |] (own g (●F{q} a)) (own g (◯F b)).
Proof. GUARD. unfold_leibniz. apply _. Qed.
Observe2 (a1 ≡ a2) (own g (●F{q1} a1)) (own g (●F{q2} a2)).
Proof. GUARD. apply own_2_obs, frac_auth_auth_frac_op_invI. Qed.
Lemma test g q a1 a2 : Observe2 (a1 ≡ a2) (own g (●F a1)) (own g (●F{q} a2)).
Proof. by apply _. Abort.
#[global] Instance own_frac_auth_frac_agree g q1 q2 a1 a2 `{!Discrete a1} :
Observe2 [| a1 ≡ a2 |] (own g (●F{q1} a1)) (own g (●F{q2} a2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite frac_auth_auth_frac_op_invI discrete_eq.
Qed.
#[global] Instance own_frac_auth_frac_agree_L `{!LeibnizEquiv A} g q1 q2 a1 a2
`{!Discrete a1} :
Observe2 [| a1 = a2 |] (own g (●F{q1} a1)) (own g (●F{q2} a2)).
Proof. GUARD. unfold_leibniz. apply _. Qed.
#[global] Instance own_frac_auth_agreeI g q a b :
Observe2 (a ≡ b) (own g (●F{q} a)) (own g (◯F b)).
Proof. GUARD. apply own_2_obs, frac_auth_auth_frac_agreeI. Qed.
Lemma test g a b : Observe2 (a ≡ b) (own g (●F a)) (own g (◯F b)).
Proof. by apply _. Abort.
#[global] Instance own_frac_auth_agree g q a b `{!Discrete a} :
Observe2 [| a ≡ b |] (own g (●F{q} a)) (own g (◯F b)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite frac_auth_auth_frac_agreeI discrete_eq.
Qed.
#[global] Instance own_frac_auth_agree_L `{!LeibnizEquiv A} g q a b
`{!Discrete a} :
Observe2 [| a = b |] (own g (●F{q} a)) (own g (◯F b)).
Proof. GUARD. unfold_leibniz. apply _. Qed.
Inclusion
High cost to prefer Some-free variant below.
Observe2 (Some b ≼ Some a) (own g (●F{q1} a)) (own g (◯F{q2} b)) | 100.
Proof.
GUARD. apply own_2_obs.
by rewrite frac_auth_auth_frag_includedI.
Qed.
#[global] Instance own_frac_auth_both_includedI_discrete `{!CmraDiscrete A}
g q1 q2 a b :
Proof.
GUARD. apply own_2_obs.
by rewrite frac_auth_auth_frag_includedI.
Qed.
#[global] Instance own_frac_auth_both_includedI_discrete `{!CmraDiscrete A}
g q1 q2 a b :
High cost to prefer Some-free variant below.
Observe2 [| Some b ≼ Some a |] (own g (●F{q1} a)) (own g (◯F{q2} b)) | 100.
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite frac_auth_auth_frag_includedI_discrete.
Qed.
#[global] Instance own_frac_auth_both_includedI_total `{!CmraTotal A} g q1 q2 a b :
Observe2 (b ≼ a) (own g (●F{q1} a)) (own g (◯F{q2} b)).
Proof.
GUARD. apply own_2_obs.
by rewrite frac_auth_auth_frag_includedI_total.
Qed.
#[global] Instance own_frac_auth_both_includedI_total_discrete `{!CmraDiscrete A,
!CmraTotal A} g q1 q2 a b :
Observe2 [| b ≼ a |] (own g (●F{q1} a)) (own g (◯F{q2} b)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite frac_auth_auth_frag_includedI_total_discrete.
Qed.
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite frac_auth_auth_frag_includedI_discrete.
Qed.
#[global] Instance own_frac_auth_both_includedI_total `{!CmraTotal A} g q1 q2 a b :
Observe2 (b ≼ a) (own g (●F{q1} a)) (own g (◯F{q2} b)).
Proof.
GUARD. apply own_2_obs.
by rewrite frac_auth_auth_frag_includedI_total.
Qed.
#[global] Instance own_frac_auth_both_includedI_total_discrete `{!CmraDiscrete A,
!CmraTotal A} g q1 q2 a b :
Observe2 [| b ≼ a |] (own g (●F{q1} a)) (own g (◯F{q2} b)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by rewrite frac_auth_auth_frag_includedI_total_discrete.
Qed.
Import fractional.
#[global] Instance own_frac_auth_auth_frac g a :
Fractional (fun q => own g (●F{q} a)).
Proof.
GUARD. intros q1 q2. split'.
- by iIntros "[$ $]".
- iIntros "[A1 A2]". by iCombine "A1 A2" as "$".
Qed.
#[global] Instance own_frac_auth_frag_frac g a `{!CoreId a} :
Fractional (fun q => own g (◯F{q} a)).
Proof.
GUARD. intros q1 q2. split'.
- by iIntros "[$ $]".
- iIntros "[A1 A2]". by iCombine "A1 A2" as "$".
Qed.
End frac_auth.
#[global] Instance own_frac_auth_auth_frac g a :
Fractional (fun q => own g (●F{q} a)).
Proof.
GUARD. intros q1 q2. split'.
- by iIntros "[$ $]".
- iIntros "[A1 A2]". by iCombine "A1 A2" as "$".
Qed.
#[global] Instance own_frac_auth_frag_frac g a `{!CoreId a} :
Fractional (fun q => own g (◯F{q} a)).
Proof.
GUARD. intros q1 q2. split'.
- by iIntros "[$ $]".
- iIntros "[A1 A2]". by iCombine "A1 A2" as "$".
Qed.
End frac_auth.
iris.algebra.lib.gmap_view
Section gmap_view.
Context `{Countable K} {V : ofe}. Notation RA := (gmap_viewR K (agreeR V)).
Context `{!HasOwn RA, !HasOwnValid RA}.
Implicit Types (k : K) (v : V).
Implicit Types (m : gmap K (agreeR V)).
#[global] Instance own_gmap_view_auth_valid g q m :
Observe [| q ≤ 1 |]%Qp (own g (gmap_view_auth (DfracOwn q) m)).
Proof.
GUARD. apply observe_pure, own_obs.
by rewrite gmap_view_auth_validI.
Qed.
#[global] Instance own_gmap_view_auth_valid_2 g q1 q2 m1 m2 :
Observe2 [| q1 + q2 ≤ 1 |]%Qp
(own g (gmap_view_auth (DfracOwn q1) m1))
(own g (gmap_view_auth (DfracOwn q2) m2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
rewrite gmap_view_auth_op_validI. by iIntros "[% _]".
Qed.
#[global] Instance own_gmap_view_auth_exclusive_l g q m1 m2 :
Observe2 False (own g (gmap_view_auth (DfracOwn 1) m1)) (own g (gmap_view_auth (DfracOwn q) m2)).
Proof.
GUARD. iIntros "M1 M2".
by iDestruct (own_gmap_view_auth_valid_2 with "M1 M2") as
%?%Qp.not_add_le_l.
Qed.
#[global] Instance own_gmap_view_auth_exclusive_r g q m1 m2 :
Observe2 False (own g (gmap_view_auth (DfracOwn q) m1)) (own g (gmap_view_auth (DfracOwn 1) m2)).
Proof.
GUARD. iIntros "M1 M2".
by iDestruct (own_gmap_view_auth_valid_2 with "M1 M2") as
%?%Qp.not_add_le_r.
Qed.
#[global] Instance own_gmap_view_frag_valid g k q v :
Observe [| q ≤ 1 |]%Qp (own g (gmap_view_frag k (DfracOwn q) (to_agree v))).
Proof.
GUARD. apply observe_pure, own_obs.
by rewrite gmap_view_frag_validI.
Qed.
#[global] Instance own_gmap_view_frag_valid_2 g k q1 q2 v1 v2 :
Observe2 [| q1 + q2 ≤ 1 |]%Qp
(own g (gmap_view_frag k (DfracOwn q1) (to_agree v1)))
(own g (gmap_view_frag k (DfracOwn q2) (to_agree v1))).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
rewrite gmap_view_frag_op_validI. by iIntros "[% _]".
Qed.
#[global] Instance own_gmap_view_frag_exclusive_l g k dq v1 v2 :
Observe2 False
(own g (gmap_view_frag k (DfracOwn 1) (to_agree v1)))
(own g (gmap_view_frag k dq (to_agree v2))).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
rewrite gmap_view_frag_op_validI.
apply bi.pure_elim_l. by move/exclusive_l.
Qed.
#[global] Instance own_gmap_view_frag_exclusive_r g k dq v1 v2 :
Observe2 False
(own g (gmap_view_frag k dq (to_agree v1)))
(own g (gmap_view_frag k (DfracOwn 1) (to_agree v2))).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
rewrite gmap_view_frag_op_validI.
apply bi.pure_elim_l. by move/exclusive_r.
Qed.
Import fractional.
#[global] Instance own_gmap_view_auth_fractional g m :
Fractional (fun q => own g (gmap_view_auth (DfracOwn q) m)).
Proof.
GUARD. intros q1 q2.
by rewrite -dfrac_op_own gmap_view_auth_dfrac_op own_op.
Qed.
#[global] Instance own_gmap_view_frag_fractional g k v :
Fractional (fun q => own g (gmap_view_frag k (DfracOwn q) (to_agree v))).
Proof.
GUARD. intros q1 q2.
by rewrite -own_op -gmap_view_frag_op dfrac_op_own agree_idemp.
Qed.
End gmap_view.
Context `{Countable K} {V : ofe}. Notation RA := (gmap_viewR K (agreeR V)).
Context `{!HasOwn RA, !HasOwnValid RA}.
Implicit Types (k : K) (v : V).
Implicit Types (m : gmap K (agreeR V)).
#[global] Instance own_gmap_view_auth_valid g q m :
Observe [| q ≤ 1 |]%Qp (own g (gmap_view_auth (DfracOwn q) m)).
Proof.
GUARD. apply observe_pure, own_obs.
by rewrite gmap_view_auth_validI.
Qed.
#[global] Instance own_gmap_view_auth_valid_2 g q1 q2 m1 m2 :
Observe2 [| q1 + q2 ≤ 1 |]%Qp
(own g (gmap_view_auth (DfracOwn q1) m1))
(own g (gmap_view_auth (DfracOwn q2) m2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
rewrite gmap_view_auth_op_validI. by iIntros "[% _]".
Qed.
#[global] Instance own_gmap_view_auth_exclusive_l g q m1 m2 :
Observe2 False (own g (gmap_view_auth (DfracOwn 1) m1)) (own g (gmap_view_auth (DfracOwn q) m2)).
Proof.
GUARD. iIntros "M1 M2".
by iDestruct (own_gmap_view_auth_valid_2 with "M1 M2") as
%?%Qp.not_add_le_l.
Qed.
#[global] Instance own_gmap_view_auth_exclusive_r g q m1 m2 :
Observe2 False (own g (gmap_view_auth (DfracOwn q) m1)) (own g (gmap_view_auth (DfracOwn 1) m2)).
Proof.
GUARD. iIntros "M1 M2".
by iDestruct (own_gmap_view_auth_valid_2 with "M1 M2") as
%?%Qp.not_add_le_r.
Qed.
#[global] Instance own_gmap_view_frag_valid g k q v :
Observe [| q ≤ 1 |]%Qp (own g (gmap_view_frag k (DfracOwn q) (to_agree v))).
Proof.
GUARD. apply observe_pure, own_obs.
by rewrite gmap_view_frag_validI.
Qed.
#[global] Instance own_gmap_view_frag_valid_2 g k q1 q2 v1 v2 :
Observe2 [| q1 + q2 ≤ 1 |]%Qp
(own g (gmap_view_frag k (DfracOwn q1) (to_agree v1)))
(own g (gmap_view_frag k (DfracOwn q2) (to_agree v1))).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
rewrite gmap_view_frag_op_validI. by iIntros "[% _]".
Qed.
#[global] Instance own_gmap_view_frag_exclusive_l g k dq v1 v2 :
Observe2 False
(own g (gmap_view_frag k (DfracOwn 1) (to_agree v1)))
(own g (gmap_view_frag k dq (to_agree v2))).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
rewrite gmap_view_frag_op_validI.
apply bi.pure_elim_l. by move/exclusive_l.
Qed.
#[global] Instance own_gmap_view_frag_exclusive_r g k dq v1 v2 :
Observe2 False
(own g (gmap_view_frag k dq (to_agree v1)))
(own g (gmap_view_frag k (DfracOwn 1) (to_agree v2))).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
rewrite gmap_view_frag_op_validI.
apply bi.pure_elim_l. by move/exclusive_r.
Qed.
Import fractional.
#[global] Instance own_gmap_view_auth_fractional g m :
Fractional (fun q => own g (gmap_view_auth (DfracOwn q) m)).
Proof.
GUARD. intros q1 q2.
by rewrite -dfrac_op_own gmap_view_auth_dfrac_op own_op.
Qed.
#[global] Instance own_gmap_view_frag_fractional g k v :
Fractional (fun q => own g (gmap_view_frag k (DfracOwn q) (to_agree v))).
Proof.
GUARD. intros q1 q2.
by rewrite -own_op -gmap_view_frag_op dfrac_op_own agree_idemp.
Qed.
End gmap_view.
bedrock.lang.algebra.gset_bij, iris.algebra.lib.gset_bij
Section gset_bij.
Context `{Countable A, Countable B}. Notation RA := (gset_bijR A B).
Context `{!HasOwn RA, !HasOwnValid RA}.
Implicit Types (a : A) (b : B) (L : gset (A * B)).
#[global] Instance own_gset_bij_auth_bijective g dq L :
Observe [| gset_bijective L |]%Qp (own g (gset_bij_auth dq L)).
Proof.
GUARD. apply observe_pure, own_obs.
by iIntros ([_ ?]%gset_bij_auth_dfrac_valid).
Qed.
#[global] Instance own_gset_bij_auth_frac_valid g q L :
Observe [| q ≤ 1 |]%Qp (own g (gset_bij_auth (DfracOwn q) L)).
Proof.
GUARD. apply observe_pure, own_obs.
by iIntros ([? _]%gset_bij_auth_dfrac_valid).
Qed.
#[global] Instance own_gset_bij_auth_valid_2 g q1 q2 L1 L2 :
Observe2 [| q1 + q2 ≤ 1 |]%Qp
(own g (gset_bij_auth (DfracOwn q1) L1))
(own g (gset_bij_auth (DfracOwn q2) L2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by iIntros ([? _]%gset_bij_auth_dfrac_op_valid).
Qed.
#[global] Instance own_gset_bij_auth_exclusive_l g q L1 L2 :
Observe2 False (own g (gset_bij_auth (DfracOwn 1) L1)) (own g (gset_bij_auth (DfracOwn q) L2)).
Proof.
GUARD. iIntros "A1 A2".
by iDestruct (own_gset_bij_auth_valid_2 with "A1 A2")
as %?%Qp.not_add_le_l.
Qed.
#[global] Instance own_gset_bij_auth_exclusive_r g q L1 L2 :
Observe2 False (own g (gset_bij_auth (DfracOwn q) L1)) (own g (gset_bij_auth (DfracOwn 1) L2)).
Proof. GUARD. symmetry. apply _. Qed.
#[global] Instance own_gset_bij_auth_agree g dq1 dq2 L1 L2 :
Observe2 [| L1 = L2 |]
(own g (gset_bij_auth dq1 L1))
(own g (gset_bij_auth dq2 L2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by iIntros ((_ & ? & _)%gset_bij_auth_dfrac_op_valid).
Qed.
Import fractional.
#[global] Instance own_gset_bij_auth_frac g L :
Fractional (fun q => own g (gset_bij_auth (DfracOwn q) L)).
Proof.
GUARD. intros q1 q2. split'.
- by iIntros "[$$]".
- iIntros "[A1 A2]". by iCombine "A1 A2" as "$".
Qed.
#[global] Instance own_gset_bij_both_elem_of g dq L a b :
Observe2 [| (a, b) ∈ L |]
(own g (gset_bij_auth dq L))
(own g (gset_bij_elem a b)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by iIntros ((_ &_ & ?)%bij_both_dfrac_valid).
Qed.
#[global] Instance own_gset_bij_elem_agree g a1 a2 b1 b2 :
Observe2 [| a1 = a2 <-> b1 = b2 |]
(own g (gset_bij_elem a1 b1))
(own g (gset_bij_elem a2 b2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by iIntros (?%gset_bij_elem_agree).
Qed.
#[global] Instance own_gset_bij_elem_agree_1 g a b1 b2 :
Observe2 [| b1 = b2 |]
(own g (gset_bij_elem a b1))
(own g (gset_bij_elem a b2)).
Proof.
GUARD. iIntros "E1 E2".
iDestruct (own_gset_bij_elem_agree with "E1 E2") as %[-> _]; auto.
Qed.
#[global] Instance own_gset_bij_elem_agree_2 g a1 a2 b :
Observe2 [| a1 = a2 |]
(own g (gset_bij_elem a1 b))
(own g (gset_bij_elem a2 b)).
Proof.
GUARD. iIntros "E1 E2".
iDestruct (own_gset_bij_elem_agree with "E1 E2") as %[_ ->]; auto.
Qed.
End gset_bij.
Context `{Countable A, Countable B}. Notation RA := (gset_bijR A B).
Context `{!HasOwn RA, !HasOwnValid RA}.
Implicit Types (a : A) (b : B) (L : gset (A * B)).
#[global] Instance own_gset_bij_auth_bijective g dq L :
Observe [| gset_bijective L |]%Qp (own g (gset_bij_auth dq L)).
Proof.
GUARD. apply observe_pure, own_obs.
by iIntros ([_ ?]%gset_bij_auth_dfrac_valid).
Qed.
#[global] Instance own_gset_bij_auth_frac_valid g q L :
Observe [| q ≤ 1 |]%Qp (own g (gset_bij_auth (DfracOwn q) L)).
Proof.
GUARD. apply observe_pure, own_obs.
by iIntros ([? _]%gset_bij_auth_dfrac_valid).
Qed.
#[global] Instance own_gset_bij_auth_valid_2 g q1 q2 L1 L2 :
Observe2 [| q1 + q2 ≤ 1 |]%Qp
(own g (gset_bij_auth (DfracOwn q1) L1))
(own g (gset_bij_auth (DfracOwn q2) L2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by iIntros ([? _]%gset_bij_auth_dfrac_op_valid).
Qed.
#[global] Instance own_gset_bij_auth_exclusive_l g q L1 L2 :
Observe2 False (own g (gset_bij_auth (DfracOwn 1) L1)) (own g (gset_bij_auth (DfracOwn q) L2)).
Proof.
GUARD. iIntros "A1 A2".
by iDestruct (own_gset_bij_auth_valid_2 with "A1 A2")
as %?%Qp.not_add_le_l.
Qed.
#[global] Instance own_gset_bij_auth_exclusive_r g q L1 L2 :
Observe2 False (own g (gset_bij_auth (DfracOwn q) L1)) (own g (gset_bij_auth (DfracOwn 1) L2)).
Proof. GUARD. symmetry. apply _. Qed.
#[global] Instance own_gset_bij_auth_agree g dq1 dq2 L1 L2 :
Observe2 [| L1 = L2 |]
(own g (gset_bij_auth dq1 L1))
(own g (gset_bij_auth dq2 L2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by iIntros ((_ & ? & _)%gset_bij_auth_dfrac_op_valid).
Qed.
Import fractional.
#[global] Instance own_gset_bij_auth_frac g L :
Fractional (fun q => own g (gset_bij_auth (DfracOwn q) L)).
Proof.
GUARD. intros q1 q2. split'.
- by iIntros "[$$]".
- iIntros "[A1 A2]". by iCombine "A1 A2" as "$".
Qed.
#[global] Instance own_gset_bij_both_elem_of g dq L a b :
Observe2 [| (a, b) ∈ L |]
(own g (gset_bij_auth dq L))
(own g (gset_bij_elem a b)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by iIntros ((_ &_ & ?)%bij_both_dfrac_valid).
Qed.
#[global] Instance own_gset_bij_elem_agree g a1 a2 b1 b2 :
Observe2 [| a1 = a2 <-> b1 = b2 |]
(own g (gset_bij_elem a1 b1))
(own g (gset_bij_elem a2 b2)).
Proof.
GUARD. apply observe_2_pure, own_2_obs.
by iIntros (?%gset_bij_elem_agree).
Qed.
#[global] Instance own_gset_bij_elem_agree_1 g a b1 b2 :
Observe2 [| b1 = b2 |]
(own g (gset_bij_elem a b1))
(own g (gset_bij_elem a b2)).
Proof.
GUARD. iIntros "E1 E2".
iDestruct (own_gset_bij_elem_agree with "E1 E2") as %[-> _]; auto.
Qed.
#[global] Instance own_gset_bij_elem_agree_2 g a1 a2 b :
Observe2 [| a1 = a2 |]
(own g (gset_bij_elem a1 b))
(own g (gset_bij_elem a2 b)).
Proof.
GUARD. iIntros "E1 E2".
iDestruct (own_gset_bij_elem_agree with "E1 E2") as %[_ ->]; auto.
Qed.
End gset_bij.
bedrock.lang.algebra.coGset
Section coGset.
Context `{Countable A, Infinite A}. Notation RA := (coGset_disjR A).
Context `{!HasOwn RA, !HasOwnValid RA}.
Implicit Types (X Y : coGset A).
#[global] Instance own_CoGSet_disjoint g X Y :
Observe2 [| X ## Y |] (own g (CoGSet X)) (own g (CoGSet Y)).
Proof. GUARD. rewrite -coGset_disj_valid_op. apply _. Qed.
End coGset.
End observe.
Context `{Countable A, Infinite A}. Notation RA := (coGset_disjR A).
Context `{!HasOwn RA, !HasOwnValid RA}.
Implicit Types (X Y : coGset A).
#[global] Instance own_CoGSet_disjoint g X Y :
Observe2 [| X ## Y |] (own g (CoGSet X)) (own g (CoGSet Y)).
Proof. GUARD. rewrite -coGset_disj_valid_op. apply _. Qed.
End coGset.
End observe.
Planning
It's unfortunate that all of the preceding observations have the form "observe something from own g x". That's a lot of boilerplate, especially if we scale up to all observations we want in practice from the RAs we use. We can eliminate that boilerplate. Perhaps we want:- For external validity (discrete CMRAs), ObserveValid {A : cmra} (Q
: Prop) (x : A) : Prop := ✓ x → Q x, ObserveValid2 := ... ✓ (x ⋅
y) → Q x y with a single instance lifting these to Observe,
Observe2 instances in terms of own g.
- We should be able to marry the preceding with the algebraic
typeclasses Exclusive, IdFree to get, once and for all, a large
class of observations of False from ownership.
- (Optional) For internal validity (general CMRAs), analogs
ObserveValidI, ObserveValidI2. Step-indexed ghost state is rare,
so this may not be as big a deal.
- For external inclusions (discrete CMRAs), ObserveIncluded {A} (Q :
Prop) (x y : A) : Prop := ✓ (x ⋅ y) → x ≼ y → Q x y, again with a
single Observe2 instance.
- (Low-hanging fruit) I suspect we can lift the first stage (exposing
ownership) past _at, _offsetR, pureR and friends with a few
proofmode instances. Maybe we already have those and I missed them.
- (Unclear) Could local_update usefully be wrapped into a typeclass, letting TC resolution take care of some of the boilerplate in the third stage? I suspect the answer is "no" because updates can involve interesting side-conditions, but that's just a guess based on past experience with manual proofs.