bedrock.lang.algebra.gset_bij
(*
* Copyright (c) 2021 BedRock Systems, Inc.
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Export iris.algebra.lib.gset_bij.
Require Import iris.algebra.proofmode_classes.
Require Import bedrock.prelude.base.
* Copyright (c) 2021 BedRock Systems, Inc.
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Export iris.algebra.lib.gset_bij.
Require Import iris.algebra.proofmode_classes.
Require Import bedrock.prelude.base.
TODO: Upstream to iris.algebra.lib.gset_bij.
Note: One might want to use this construction with types A, B
equipped with an interesting setoid equality. In that case, we'd need
Proper and Params instances.
Section gset_bij.
Context `{Countable A, Countable B}.
Implicit Types (a : A) (b : B) (L : gset (A * B)).
Context `{Countable A, Countable B}.
Implicit Types (a : A) (b : B) (L : gset (A * B)).
Useful corollary to gset_bij_auth_extend that also produces
the new element.
Lemma gset_bij_update_alloc {L} a b :
(∀ b', (a, b') ∉ L) → (∀ a', (a', b) ∉ L) →
gset_bij_auth (DfracOwn 1) L ~~> gset_bij_auth (DfracOwn 1) ({[(a, b)]} ∪ L) ⋅ gset_bij_elem a b.
Proof.
intros. etrans; first exact: gset_bij_auth_extend.
rewrite {1}(core_id_extract (gset_bij_elem _ _) (gset_bij_auth _ _))//.
apply bij_view_included. set_solver+.
Qed.
(∀ b', (a, b') ∉ L) → (∀ a', (a', b) ∉ L) →
gset_bij_auth (DfracOwn 1) L ~~> gset_bij_auth (DfracOwn 1) ({[(a, b)]} ∪ L) ⋅ gset_bij_elem a b.
Proof.
intros. etrans; first exact: gset_bij_auth_extend.
rewrite {1}(core_id_extract (gset_bij_elem _ _) (gset_bij_auth _ _))//.
apply bij_view_included. set_solver+.
Qed.
Proof mode
#[global] Instance gset_bij_auth_is_op q q1 q2 L :
IsOp q q1 q2 ->
IsOp' (gset_bij_auth q L) (gset_bij_auth q1 L) (gset_bij_auth q2 L).
Proof. by rewrite /IsOp' /IsOp gset_bij_auth_dfrac_op=>->. Qed.
End gset_bij.
#[global] Hint Opaque gset_bij_auth gset_bij_elem : typeclass_instances.
IsOp q q1 q2 ->
IsOp' (gset_bij_auth q L) (gset_bij_auth q1 L) (gset_bij_auth q2 L).
Proof. by rewrite /IsOp' /IsOp gset_bij_auth_dfrac_op=>->. Qed.
End gset_bij.
#[global] Hint Opaque gset_bij_auth gset_bij_elem : typeclass_instances.