bedrock.lang.cpp.syntax.types
(*
* Copyright (c) 2020-2024 BedRock Systems, Inc.
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import bedrock.prelude.elpi.derive.
Require Import bedrock.prelude.base.
Require Import bedrock.prelude.bool.
Require Import bedrock.prelude.list.
Require Export bedrock.lang.cpp.syntax.core.
Require Export bedrock.lang.cpp.syntax.extras.
Set Primitive Projections.
Section with_lang.
Context {lang : lang.t}.
#[local] Notation type := (type' lang).
#[local] Notation exprtype := (exprtype' lang).
#[local] Notation decltype := (decltype' lang).
* Copyright (c) 2020-2024 BedRock Systems, Inc.
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import bedrock.prelude.elpi.derive.
Require Import bedrock.prelude.base.
Require Import bedrock.prelude.bool.
Require Import bedrock.prelude.list.
Require Export bedrock.lang.cpp.syntax.core.
Require Export bedrock.lang.cpp.syntax.extras.
Set Primitive Projections.
Section with_lang.
Context {lang : lang.t}.
#[local] Notation type := (type' lang).
#[local] Notation exprtype := (exprtype' lang).
#[local] Notation decltype := (decltype' lang).
Qualifier normalization
Section qual_norm.
Context {A : Type}.
Variable f : type_qualifiers -> type -> A.
Fixpoint qual_norm' (q : type_qualifiers) (t : type) : A :=
match t with
| Tqualified q' t => qual_norm' (merge_tq q q') t
| _ => f q t
end.
#[global] Hint Opaque qual_norm' : typeclass_instances.
Definition qual_norm : type -> A :=
qual_norm' QM.
#[global] Hint Opaque qual_norm : typeclass_instances.
End qual_norm.
Lemma qual_norm'_only_type {T} (f : _ -> T) t : forall q1 q2,
qual_norm' (fun (_ : type_qualifiers) t => f t) q1 t
= qual_norm' (fun (_ : type_qualifiers) t => f t) q2 t.
Proof. induction t; simpl; auto. Qed.
Lemma qual_norm_map {T U} (f : T -> U) g ty :
f (qual_norm g ty) = qual_norm (fun cv t => f (g cv t)) ty.
Proof.
unfold qual_norm.
generalize QM.
induction ty; simpl; intros; eauto.
Qed.
Definition decompose_type : type -> type_qualifiers * type :=
qual_norm (fun q t => (q, t)).
#[global] Hint Opaque decompose_type : typeclass_instances.
#[global] Arguments decompose_type !_ / : simpl nomatch, assert.
Context {A : Type}.
Variable f : type_qualifiers -> type -> A.
Fixpoint qual_norm' (q : type_qualifiers) (t : type) : A :=
match t with
| Tqualified q' t => qual_norm' (merge_tq q q') t
| _ => f q t
end.
#[global] Hint Opaque qual_norm' : typeclass_instances.
Definition qual_norm : type -> A :=
qual_norm' QM.
#[global] Hint Opaque qual_norm : typeclass_instances.
End qual_norm.
Lemma qual_norm'_only_type {T} (f : _ -> T) t : forall q1 q2,
qual_norm' (fun (_ : type_qualifiers) t => f t) q1 t
= qual_norm' (fun (_ : type_qualifiers) t => f t) q2 t.
Proof. induction t; simpl; auto. Qed.
Lemma qual_norm_map {T U} (f : T -> U) g ty :
f (qual_norm g ty) = qual_norm (fun cv t => f (g cv t)) ty.
Proof.
unfold qual_norm.
generalize QM.
induction ty; simpl; intros; eauto.
Qed.
Definition decompose_type : type -> type_qualifiers * type :=
qual_norm (fun q t => (q, t)).
#[global] Hint Opaque decompose_type : typeclass_instances.
#[global] Arguments decompose_type !_ / : simpl nomatch, assert.
take_qualifiers, drop_qualifiers return and remove leading
qualifiers.
Definition take_qualifiers : type -> type_qualifiers :=
qual_norm (fun cv _ => cv).
Fixpoint drop_qualifiers (t : type) : type :=
match t with
| Tqualified _ t => drop_qualifiers t
| _ => t
end.
qual_norm (fun cv _ => cv).
Fixpoint drop_qualifiers (t : type) : type :=
match t with
| Tqualified _ t => drop_qualifiers t
| _ => t
end.
drop_reference removes any leading reference types.
Fixpoint drop_reference (t : type) : exprtype' lang :=
match drop_qualifiers t with
| Tref u | Trv_ref u => drop_reference u
| _ => t (* We do not normalize qualifiers here to promote sharing *)
end.
Succeed Example TEST_drop_reference : drop_reference (Tconst Tint) = Tconst Tint := eq_refl.
Succeed Example TEST_drop_reference : drop_reference (Tconst (Tref Tint)) = Tint := eq_refl.
Succeed Example TEST_drop_reference : drop_reference (Tconst (Tref (Tconst Tint))) = Tconst Tint := eq_refl.
match drop_qualifiers t with
| Tref u | Trv_ref u => drop_reference u
| _ => t (* We do not normalize qualifiers here to promote sharing *)
end.
Succeed Example TEST_drop_reference : drop_reference (Tconst Tint) = Tconst Tint := eq_refl.
Succeed Example TEST_drop_reference : drop_reference (Tconst (Tref Tint)) = Tint := eq_refl.
Succeed Example TEST_drop_reference : drop_reference (Tconst (Tref (Tconst Tint))) = Tconst Tint := eq_refl.
Smart constructors
Definition tqualified' (q : type_qualifiers) (t : type) : type :=
match t with
| Tref _ | Trv_ref _ => t
| _ => match q with QM => t | _ => Tqualified q t end
end.
#[global] Hint Opaque tqualified' : typeclass_instances.
#[global] Arguments tqualified' _ !_ / : simpl nomatch, assert.
Definition tqualified : type_qualifiers -> type -> type :=
qual_norm' tqualified'.
#[global] Hint Opaque tqualified : typeclass_instances.
#[global] Arguments tqualified _ !_ / : simpl nomatch, assert.
match t with
| Tref _ | Trv_ref _ => t
| _ => match q with QM => t | _ => Tqualified q t end
end.
#[global] Hint Opaque tqualified' : typeclass_instances.
#[global] Arguments tqualified' _ !_ / : simpl nomatch, assert.
Definition tqualified : type_qualifiers -> type -> type :=
qual_norm' tqualified'.
#[global] Hint Opaque tqualified : typeclass_instances.
#[global] Arguments tqualified _ !_ / : simpl nomatch, assert.
tref, trv_ref implement reference collapsing.
Background:
https://en.cppreference.com/w/cpp/language/referenceReference_collapsing
https://www.eel.is/c++draft/dcl.ref6
https://www.eel.is/c++draft/dcl.ref5
Definition tref := fix tref (acc : type_qualifiers) (t : type) : type :=
match t with
| Tref t | Trv_ref t => tref QM t
| Tqualified q t => tref (merge_tq acc q) t
| _ => Tref (tqualified acc t)
end.
#[global] Hint Opaque tref : typeclass_instances.
#[global] Arguments tref _ !_ / : simpl nomatch, assert.
Definition trv_ref := fix trv_ref (acc : type_qualifiers) (t : type) : type :=
match t with
| Tref t => tref QM t
| Trv_ref t => trv_ref QM t
| Tqualified q t => trv_ref (merge_tq acc q) t
| _ => Trv_ref (tqualified acc t)
end.
#[global] Hint Opaque trv_ref : typeclass_instances.
#[global] Arguments trv_ref _ !_ / : simpl nomatch, assert.
match t with
| Tref t | Trv_ref t => tref QM t
| Tqualified q t => tref (merge_tq acc q) t
| _ => Tref (tqualified acc t)
end.
#[global] Hint Opaque tref : typeclass_instances.
#[global] Arguments tref _ !_ / : simpl nomatch, assert.
Definition trv_ref := fix trv_ref (acc : type_qualifiers) (t : type) : type :=
match t with
| Tref t => tref QM t
| Trv_ref t => trv_ref QM t
| Tqualified q t => trv_ref (merge_tq acc q) t
| _ => Trv_ref (tqualified acc t)
end.
#[global] Hint Opaque trv_ref : typeclass_instances.
#[global] Arguments trv_ref _ !_ / : simpl nomatch, assert.
An equivalence relation on types that quotients by "identical to C++".
The equations here are dictated by the fact that type is too big for
C++.
Qualifier normalization
| Tqualified_id t : Tqualified QM t ≡ t
| Tqualified_merge q q' t : Tqualified q (Tqualified q' t) ≡ Tqualified (merge_tq q q') t
(*
"An array type whose elements are cv-qualified is also considered to
have the same cv-qualifications as its elements. ... Cv-qualifiers
applied to an array type attach to the underlying element type."
<https://www.eel.is/c++draft/basic.type.qualifier3> *)
| Tqualified_array q t n : Tqualified q (Tarray t n) ≡ Tarray (Tqualified q t) n
(*
"A function or reference type is always cv-unqualified."
<https://www.eel.is/c++draft/basic.type.qualifier1> *)
| Tqualified_ref q t : Tqualified q (Tref t) ≡ Tref t
| Tqualified_rv_ref q t : Tqualified q (Trv_ref t) ≡ Trv_ref t
| Tqualified_func q ft : Tqualified q (Tfunction ft) ≡ Tfunction ft
| Tqualified_merge q q' t : Tqualified q (Tqualified q' t) ≡ Tqualified (merge_tq q q') t
(*
"An array type whose elements are cv-qualified is also considered to
have the same cv-qualifications as its elements. ... Cv-qualifiers
applied to an array type attach to the underlying element type."
<https://www.eel.is/c++draft/basic.type.qualifier3> *)
| Tqualified_array q t n : Tqualified q (Tarray t n) ≡ Tarray (Tqualified q t) n
(*
"A function or reference type is always cv-unqualified."
<https://www.eel.is/c++draft/basic.type.qualifier1> *)
| Tqualified_ref q t : Tqualified q (Tref t) ≡ Tref t
| Tqualified_rv_ref q t : Tqualified q (Trv_ref t) ≡ Trv_ref t
| Tqualified_func q ft : Tqualified q (Tfunction ft) ≡ Tfunction ft
"After producing the list of parameter types, any top-level
cv-qualifiers modifying a parameter type are deleted when forming the
function type."
<https://www.eel.is/c++draft/dcl.fct5>
| Tqualified_func_param cc ar ret q t args args' :
Tfunction (@FunctionType _ cc ar ret (args ++ Tqualified q t :: args')) ≡ Tfunction (@FunctionType _ cc ar ret (args ++ t :: args'))
Tfunction (@FunctionType _ cc ar ret (args ++ Tqualified q t :: args')) ≡ Tfunction (@FunctionType _ cc ar ret (args ++ t :: args'))
Equivalence
| type_equiv_refl t : t ≡ t
| type_equiv_sym t u : t ≡ u -> u ≡ t
| type_equiv_trans t u v : t ≡ u -> u ≡ v -> t ≡ v
| type_equiv_sym t u : t ≡ u -> u ≡ t
| type_equiv_trans t u v : t ≡ u -> u ≡ v -> t ≡ v
Compatibility
| Tptr_proper : Proper (equiv ==> equiv) Tptr
| Tref_proper : Proper (equiv ==> equiv) Tref
| Trv_ref_proper : Proper (equiv ==> equiv) Trv_ref
| Tarray_proper : Proper (equiv ==> eq ==> equiv) Tarray
(* | Tfunction_proper cc ar : Proper (equiv ==> equiv ==> equiv) (@Tfunction lang cc ar) *)
| Tmember_pointer_proper gn : Proper (equiv ==> equiv) (Tmember_pointer gn)
| Tqualified_proper q : Proper (equiv ==> equiv) (Tqualified q)
.
#[global] Existing Instances
type_equiv
Tptr_proper
Tref_proper
Trv_ref_proper
Tarray_proper
Tmember_pointer_proper
Tqualified_proper
.
#[global] Instance type_equivalence : Equivalence (≡@{type}) :=
Build_Equivalence _ type_equiv_refl type_equiv_sym type_equiv_trans.
#[global] Instance Tconst_volatile_proper : Proper (equiv ==> equiv) Tconst_volatile.
Proof. solve_proper. Qed.
#[global] Instance Tconst_proper : Proper (equiv ==> equiv) Tconst.
Proof. solve_proper. Qed.
#[global] Instance Tvolatile_proper : Proper (equiv ==> equiv) Tvolatile.
Proof. solve_proper. Qed.
#[global] Instance Tmut_proper : Proper (equiv ==> equiv) Tmut.
Proof. solve_proper. Qed.
Lemma Tmut_equiv t : Tmut t ≡ t.
Proof. by rewrite Tqualified_id. Qed.
| Tref_proper : Proper (equiv ==> equiv) Tref
| Trv_ref_proper : Proper (equiv ==> equiv) Trv_ref
| Tarray_proper : Proper (equiv ==> eq ==> equiv) Tarray
(* | Tfunction_proper cc ar : Proper (equiv ==> equiv ==> equiv) (@Tfunction lang cc ar) *)
| Tmember_pointer_proper gn : Proper (equiv ==> equiv) (Tmember_pointer gn)
| Tqualified_proper q : Proper (equiv ==> equiv) (Tqualified q)
.
#[global] Existing Instances
type_equiv
Tptr_proper
Tref_proper
Trv_ref_proper
Tarray_proper
Tmember_pointer_proper
Tqualified_proper
.
#[global] Instance type_equivalence : Equivalence (≡@{type}) :=
Build_Equivalence _ type_equiv_refl type_equiv_sym type_equiv_trans.
#[global] Instance Tconst_volatile_proper : Proper (equiv ==> equiv) Tconst_volatile.
Proof. solve_proper. Qed.
#[global] Instance Tconst_proper : Proper (equiv ==> equiv) Tconst.
Proof. solve_proper. Qed.
#[global] Instance Tvolatile_proper : Proper (equiv ==> equiv) Tvolatile.
Proof. solve_proper. Qed.
#[global] Instance Tmut_proper : Proper (equiv ==> equiv) Tmut.
Proof. solve_proper. Qed.
Lemma Tmut_equiv t : Tmut t ≡ t.
Proof. by rewrite Tqualified_id. Qed.
It would be nice to make this the default.
is_qualified t decides if t has top-level qualifiers.
Note: is_qualified is incompatible with the equivalence on types.
Counterexample: Tqualified QM (Tref t) ≡ Tref t.
Definition is_qualified (t : type) : bool :=
if t is Tqualified _ _ then true else false.
Lemma is_qualified_spec t : is_qualified t <-> ∃ q t', t = Tqualified q t'.
Proof. split=>Hq. by destruct t; eauto. by destruct Hq as (?&?&->). Qed.
Lemma is_qualified_qual q t : is_qualified (Tqualified q t).
Proof. done. Qed.
Section qual_norm.
Context {A : Type}.
Implicit Types (f : type_qualifiers -> type -> A).
if t is Tqualified _ _ then true else false.
Lemma is_qualified_spec t : is_qualified t <-> ∃ q t', t = Tqualified q t'.
Proof. split=>Hq. by destruct t; eauto. by destruct Hq as (?&?&->). Qed.
Lemma is_qualified_qual q t : is_qualified (Tqualified q t).
Proof. done. Qed.
Section qual_norm.
Context {A : Type}.
Implicit Types (f : type_qualifiers -> type -> A).
Lemma qual_norm'_unfold f q t :
qual_norm' f q t =
if t is Tqualified q' t'
then qual_norm' f (merge_tq q q') t'
else f q t.
Proof. by destruct t. Qed.
We use this relation to state induction principles for things
defined in terms of qual_norm' and qual_norm.
Example: elim: (qual_norm_ok _ ty) in a goal involving qual_norm
f ty tends to be easier to use than pattern (qual_norm f ty);
induction using qual_norm_ind because one need not repeat the
function f in the proof script.
Inductive qual_norm_spec f : type_qualifiers -> type -> A -> Prop :=
| qual_norm_spec_unqual q t : ~~ is_qualified t -> qual_norm_spec f q t (f q t)
| qual_norm_spec_qual q q' t' ret :
qual_norm_spec f (merge_tq q q') t' ret ->
qual_norm_spec f q (Tqualified q' t') ret
.
#[local] Hint Constructors qual_norm_spec : core.
Lemma qual_norm'_ok f q t : qual_norm_spec f q t (qual_norm' f q t).
Proof.
move: q. induction t; intros.
all: rewrite qual_norm'_unfold; auto.
Qed.
Lemma qual_norm'_unqual f q t : ~~ is_qualified t -> qual_norm' f q t = f q t.
Proof.
intros. rewrite qual_norm'_unfold. by destruct t.
Qed.
Lemma qual_norm'_idemp f q t : qual_norm' (qual_norm' f) q t = qual_norm' f q t.
Proof.
induction (qual_norm'_ok f q t).
{ by rewrite !qual_norm'_unqual. }
{ done. }
Qed.
Lemma qual_norm_unfold f t :
qual_norm f t =
if t is Tqualified q' t'
then qual_norm' f q' t'
else f QM t.
Proof.
rewrite /qual_norm qual_norm'_unfold. f_equiv.
by rewrite left_id_L.
Qed.
Lemma qual_norm_ok f t : qual_norm_spec f QM t (qual_norm f t).
Proof. apply qual_norm'_ok. Qed.
Lemma qual_norm_unqual f t : ~~ is_qualified t -> qual_norm f t = f QM t.
Proof. apply qual_norm'_unqual. Qed.
Lemma qual_norm_idemp f t : qual_norm (qual_norm' f) t = qual_norm f t.
Proof. apply qual_norm'_idemp. Qed.
End qual_norm.
Lemma qual_norm'_bind {A B} (f : type_qualifiers -> type -> A) (g : A -> B) q t :
g (qual_norm' f q t) = qual_norm' (fun q => g ∘ f q) q t.
Proof.
induction (qual_norm'_ok f q t).
{ by rewrite qual_norm'_unqual. }
{ done. }
Qed.
Lemma qual_norm_bind {A B} (f : type_qualifiers -> type -> A) (g : A -> B) t :
g (qual_norm f t) = qual_norm (fun q => g ∘ f q) t.
Proof. apply qual_norm'_bind. Qed.
Lemma qual_norm'_equiv q t : qual_norm' Tqualified q t ≡ Tqualified q t.
Proof.
induction (qual_norm'_ok Tqualified q t).
{ done. }
{ by rewrite Tqualified_merge. }
Qed.
Lemma qual_norm_equiv t : qual_norm Tqualified t ≡ t.
Proof. by rewrite /qual_norm qual_norm'_equiv Tqualified_id. Qed.
Lemma decompose_type_unfold t :
decompose_type t =
if t is Tqualified q t' then
let p := decompose_type t' in
(merge_tq q p.1, p.2)
else (QM, t).
Proof.
rewrite /decompose_type qual_norm_unfold.
destruct t; try done. set pair := fun x y => (x, y).
move: q. induction t=>?; cbn; try by rewrite right_id_L.
rewrite left_id_L !IHt /=. f_equal. by rewrite assoc_L.
Qed.
Inductive decompose_type_spec : type -> type_qualifiers * type -> Prop :=
| decompose_type_spec_unqual t : ~~ is_qualified t -> decompose_type_spec t (QM, t)
| decompose_type_spec_qual q t p :
decompose_type_spec t p ->
decompose_type_spec (Tqualified q t) (merge_tq q p.1, p.2)
.
#[local] Hint Constructors decompose_type_spec : core.
Lemma decompose_type_ok t : decompose_type_spec t (decompose_type t).
Proof.
induction t.
all: rewrite decompose_type_unfold; cbn; auto.
Qed.
Lemma is_qualified_decompose_type t : ~~ is_qualified (decompose_type t).2.
Proof. by induction (decompose_type_ok t). Qed.
Lemma decompose_type_unqual t : ~~ is_qualified t -> decompose_type t = (QM, t).
Proof. apply qual_norm_unqual. Qed.
Lemma decompose_type_qual q t :
decompose_type (Tqualified q t) =
let p := decompose_type t in
(merge_tq q p.1, p.2).
Proof. by rewrite decompose_type_unfold. Qed.
Lemma decompose_type_idemp t :
decompose_type (decompose_type t).2 = (QM, (decompose_type t).2).
Proof. rewrite decompose_type_unqual; eauto using is_qualified_decompose_type. Qed.
Lemma decompose_type_equiv t : let p := decompose_type t in Tqualified p.1 p.2 ≡ t.
Proof.
elim: (decompose_type_ok t); cbn.
{ intros. by rewrite Tqualified_id. }
{ intros ???? <-. by rewrite Tqualified_merge. }
Qed.
Lemma qual_norm'_decompose_type {A} (f : type_qualifiers -> type -> A) q t :
qual_norm' f q t =
let p := decompose_type t in
f (merge_tq q p.1) p.2.
Proof.
move: q. induction t=>? /=; try by rewrite right_id_L.
rewrite decompose_type_unfold IHt /=. by rewrite assoc_L.
Qed.
Lemma qual_norm_decompose_type {A} (f : type_qualifiers -> type -> A) t :
qual_norm f t =
let p := decompose_type t in
f p.1 p.2.
Proof.
rewrite /qual_norm qual_norm'_decompose_type. cbn.
by rewrite left_id_L.
Qed.
Lemma is_qualified_drop_qualifiers ty : ~~ is_qualified (drop_qualifiers ty).
Proof. by induction ty. Qed.
#[local] Hint Resolve is_qualified_drop_qualifiers | 0 : core. (* TODO: make this global? *)
Lemma drop_qualifiers_unqual t : ~~ is_qualified t -> drop_qualifiers t = t.
Proof. by destruct t; cbn; auto. Qed.
Lemma drop_qualifiers_qual_norm' q t : drop_qualifiers t = qual_norm' (fun _ t => t) q t.
Proof.
elim: (qual_norm'_ok _ q t).
{ intros. by rewrite drop_qualifiers_unqual. }
{ done. }
Qed.
Lemma drop_qualifiers_qual_norm t : drop_qualifiers t = qual_norm (fun _ t => t) t.
Proof. apply drop_qualifiers_qual_norm'. Qed.
Lemma drop_qualifiers_decompose_type t : drop_qualifiers t = (decompose_type t).2.
Proof. by rewrite drop_qualifiers_qual_norm qual_norm_decompose_type. Qed.
Lemma drop_qualifiers_idemp t : drop_qualifiers (drop_qualifiers t) = drop_qualifiers t.
Proof. by rewrite drop_qualifiers_unqual. Qed.
Lemma unqual_drop_qualifiers ty tq ty' : drop_qualifiers ty <> Tqualified tq ty'.
Proof. by induction ty. Qed.
Variant qual_norm_decomp_spec {A} (f : type_qualifiers → type → A) t : A -> Prop :=
| QualNormDecomp q' t' : (q', t') = decompose_type t -> qual_norm_decomp_spec f t (f q' t')
.
Lemma qual_norm_decomp_ok {A} (f : type_qualifiers → type → A) t : qual_norm_decomp_spec f t (qual_norm f t).
Proof.
rewrite qual_norm_decompose_type.
by constructor; rewrite -?surjective_pairing -?drop_qualifiers_decompose_type.
Qed.
Erasing qualifiers
Fixpoint erase_qualifiers (t : type) : type :=
match t with
| Tptr t => Tptr (erase_qualifiers t)
| Tref t => Tref (erase_qualifiers t)
| Trv_ref t => Trv_ref (erase_qualifiers t)
| Tnum _ _
| Tchar_ _
| Tbool
| Tvoid
| Tfloat_ _
| Tnamed _
| Tenum _ => t
| Tarray t sz => Tarray (erase_qualifiers t) sz
| Tincomplete_array t => Tincomplete_array (erase_qualifiers t)
| Tvariable_array t e => Tvariable_array (erase_qualifiers t) e
| Tfunction ft => Tfunction $ FunctionType (ft_cc:=ft.(ft_cc)) (ft_arity:=ft.(ft_arity)) (erase_qualifiers ft.(ft_return)) (List.map erase_qualifiers ft.(ft_params))
| Tmember_pointer cls t => Tmember_pointer cls (erase_qualifiers t)
| Tqualified _ t => erase_qualifiers t
| Tnullptr => Tnullptr
| Tarch sz nm => Tarch sz nm
| Tunsupported msg => Tunsupported msg
| Tparam _
| Tresult_param _
| Tresult_global _
| Tresult_unop _ _ | Tresult_binop _ _ _ | Tresult_call _ _ | Tresult_member_call _ _ _
| Tresult_parenlist _ _
| Tresult_member _ _
| Tdecltype _ => t (* TODO: it isn't clear what erase_qualifiers means on meta types *)
| Texprtype _ => t (* TODO: it isn't clear what erase_qualifiers means on meta types *)
end.
Lemma is_qualified_erase_qualifiers ty : ~~ is_qualified (erase_qualifiers ty).
Proof. by induction ty. Qed.
#[local] Hint Resolve is_qualified_erase_qualifiers | 0 : core. (* TODO: global *)
Lemma erase_qualifiers_qual_norm' q t :
erase_qualifiers t = qual_norm' (fun _ t => erase_qualifiers t) q t.
Proof. by elim: (qual_norm'_ok _ q t). Qed.
Lemma erase_qualifiers_qual_norm t :
erase_qualifiers t = qual_norm (fun _ t => erase_qualifiers t) t.
Proof. apply erase_qualifiers_qual_norm'. Qed.
Lemma erase_qualifiers_decompose_type t :
erase_qualifiers t = erase_qualifiers (decompose_type t).2.
Proof. by rewrite erase_qualifiers_qual_norm qual_norm_decompose_type. Qed.
Lemma erase_qualifiers_idemp t : erase_qualifiers (erase_qualifiers t) = erase_qualifiers t.
Proof.
move: t. fix IHt 1=>t.
destruct t; cbn; auto with f_equal.
{ (* functions *) rewrite IHt. f_equal. f_equal. induction (ft_params t); cbn; auto with f_equal. }
Qed.
Lemma drop_erase_qualifiers t : drop_qualifiers (erase_qualifiers t) = erase_qualifiers t.
Proof. by rewrite drop_qualifiers_unqual. Qed.
Lemma erase_drop_qualifiers t : erase_qualifiers (drop_qualifiers t) = erase_qualifiers t.
Proof. induction t; cbn; auto. Qed.
#[deprecated(since="20230531", note="Use [drop_erase_qualifiers].")]
Notation drop_erase := drop_erase_qualifiers.
#[deprecated(since="20230531", note="Use [erase_drop_qualifiers].")]
Notation erase_drop := drop_erase_qualifiers.
Lemma unqual_erase_qualifiers ty tq ty' : erase_qualifiers ty <> Tqualified tq ty'.
Proof. by induction ty. Qed.
match t with
| Tptr t => Tptr (erase_qualifiers t)
| Tref t => Tref (erase_qualifiers t)
| Trv_ref t => Trv_ref (erase_qualifiers t)
| Tnum _ _
| Tchar_ _
| Tbool
| Tvoid
| Tfloat_ _
| Tnamed _
| Tenum _ => t
| Tarray t sz => Tarray (erase_qualifiers t) sz
| Tincomplete_array t => Tincomplete_array (erase_qualifiers t)
| Tvariable_array t e => Tvariable_array (erase_qualifiers t) e
| Tfunction ft => Tfunction $ FunctionType (ft_cc:=ft.(ft_cc)) (ft_arity:=ft.(ft_arity)) (erase_qualifiers ft.(ft_return)) (List.map erase_qualifiers ft.(ft_params))
| Tmember_pointer cls t => Tmember_pointer cls (erase_qualifiers t)
| Tqualified _ t => erase_qualifiers t
| Tnullptr => Tnullptr
| Tarch sz nm => Tarch sz nm
| Tunsupported msg => Tunsupported msg
| Tparam _
| Tresult_param _
| Tresult_global _
| Tresult_unop _ _ | Tresult_binop _ _ _ | Tresult_call _ _ | Tresult_member_call _ _ _
| Tresult_parenlist _ _
| Tresult_member _ _
| Tdecltype _ => t (* TODO: it isn't clear what erase_qualifiers means on meta types *)
| Texprtype _ => t (* TODO: it isn't clear what erase_qualifiers means on meta types *)
end.
Lemma is_qualified_erase_qualifiers ty : ~~ is_qualified (erase_qualifiers ty).
Proof. by induction ty. Qed.
#[local] Hint Resolve is_qualified_erase_qualifiers | 0 : core. (* TODO: global *)
Lemma erase_qualifiers_qual_norm' q t :
erase_qualifiers t = qual_norm' (fun _ t => erase_qualifiers t) q t.
Proof. by elim: (qual_norm'_ok _ q t). Qed.
Lemma erase_qualifiers_qual_norm t :
erase_qualifiers t = qual_norm (fun _ t => erase_qualifiers t) t.
Proof. apply erase_qualifiers_qual_norm'. Qed.
Lemma erase_qualifiers_decompose_type t :
erase_qualifiers t = erase_qualifiers (decompose_type t).2.
Proof. by rewrite erase_qualifiers_qual_norm qual_norm_decompose_type. Qed.
Lemma erase_qualifiers_idemp t : erase_qualifiers (erase_qualifiers t) = erase_qualifiers t.
Proof.
move: t. fix IHt 1=>t.
destruct t; cbn; auto with f_equal.
{ (* functions *) rewrite IHt. f_equal. f_equal. induction (ft_params t); cbn; auto with f_equal. }
Qed.
Lemma drop_erase_qualifiers t : drop_qualifiers (erase_qualifiers t) = erase_qualifiers t.
Proof. by rewrite drop_qualifiers_unqual. Qed.
Lemma erase_drop_qualifiers t : erase_qualifiers (drop_qualifiers t) = erase_qualifiers t.
Proof. induction t; cbn; auto. Qed.
#[deprecated(since="20230531", note="Use [drop_erase_qualifiers].")]
Notation drop_erase := drop_erase_qualifiers.
#[deprecated(since="20230531", note="Use [erase_drop_qualifiers].")]
Notation erase_drop := drop_erase_qualifiers.
Lemma unqual_erase_qualifiers ty tq ty' : erase_qualifiers ty <> Tqualified tq ty'.
Proof. by induction ty. Qed.
(* Lemmas for all type constructors; in constructor order for easy review. *)
Lemma drop_qualifiers_Tptr : forall [ty ty'],
drop_qualifiers ty = Tptr ty' -> erase_qualifiers ty = Tptr (erase_qualifiers ty').
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tref : forall [ty ty'],
drop_qualifiers ty = Tref ty' -> erase_qualifiers ty = Tref (erase_qualifiers ty').
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Trv_ref : forall [ty ty'],
drop_qualifiers ty = Trv_ref ty' -> erase_qualifiers ty = Trv_ref (erase_qualifiers ty').
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tnum : forall [ty sz sgn],
drop_qualifiers ty = Tnum sz sgn -> erase_qualifiers ty = Tnum sz sgn.
Proof. by induction ty. Qed.
Lemma drop_qualifiers_Tchar_ : forall [ty ct],
drop_qualifiers ty = Tchar_ ct -> erase_qualifiers ty = Tchar_ ct.
Proof. by induction ty. Qed.
Lemma drop_qualifiers_Tvoid : forall [ty],
drop_qualifiers ty = Tvoid -> erase_qualifiers ty = Tvoid.
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tarray : forall [ty ty' n],
drop_qualifiers ty = Tarray ty' n -> erase_qualifiers ty = Tarray (erase_qualifiers ty') n.
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tnamed : forall [ty n],
drop_qualifiers ty = Tnamed n -> erase_qualifiers ty = Tnamed n.
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tenum : forall [ty nm],
drop_qualifiers ty = Tenum nm -> erase_qualifiers ty = Tenum nm.
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tfunction : forall [ty c ar ty' tArgs],
drop_qualifiers ty = Tfunction (@FunctionType _ c ar ty' tArgs) ->
erase_qualifiers ty = Tfunction (@FunctionType _ c ar (erase_qualifiers ty') (map erase_qualifiers tArgs)).
Proof. induction ty; simpl; intros; try congruence; eauto. inversion H; subst. done. Qed.
Lemma drop_qualifiers_Tbool : forall [ty],
drop_qualifiers ty = Tbool -> erase_qualifiers ty = Tbool.
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tmember_pointer : forall [ty cls ty'],
drop_qualifiers ty = Tmember_pointer cls ty' ->
erase_qualifiers ty = Tmember_pointer cls (erase_qualifiers ty').
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tfloat : forall [ty sz],
drop_qualifiers ty = Tfloat_ sz -> erase_qualifiers ty = Tfloat_ sz.
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
(* Omit Tqualified on purpose *)
Lemma drop_qualifiers_Tnullptr : forall [ty],
drop_qualifiers ty = Tnullptr -> erase_qualifiers ty = Tnullptr.
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tptr : forall [ty ty'],
drop_qualifiers ty = Tptr ty' -> erase_qualifiers ty = Tptr (erase_qualifiers ty').
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tref : forall [ty ty'],
drop_qualifiers ty = Tref ty' -> erase_qualifiers ty = Tref (erase_qualifiers ty').
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Trv_ref : forall [ty ty'],
drop_qualifiers ty = Trv_ref ty' -> erase_qualifiers ty = Trv_ref (erase_qualifiers ty').
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tnum : forall [ty sz sgn],
drop_qualifiers ty = Tnum sz sgn -> erase_qualifiers ty = Tnum sz sgn.
Proof. by induction ty. Qed.
Lemma drop_qualifiers_Tchar_ : forall [ty ct],
drop_qualifiers ty = Tchar_ ct -> erase_qualifiers ty = Tchar_ ct.
Proof. by induction ty. Qed.
Lemma drop_qualifiers_Tvoid : forall [ty],
drop_qualifiers ty = Tvoid -> erase_qualifiers ty = Tvoid.
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tarray : forall [ty ty' n],
drop_qualifiers ty = Tarray ty' n -> erase_qualifiers ty = Tarray (erase_qualifiers ty') n.
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tnamed : forall [ty n],
drop_qualifiers ty = Tnamed n -> erase_qualifiers ty = Tnamed n.
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tenum : forall [ty nm],
drop_qualifiers ty = Tenum nm -> erase_qualifiers ty = Tenum nm.
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tfunction : forall [ty c ar ty' tArgs],
drop_qualifiers ty = Tfunction (@FunctionType _ c ar ty' tArgs) ->
erase_qualifiers ty = Tfunction (@FunctionType _ c ar (erase_qualifiers ty') (map erase_qualifiers tArgs)).
Proof. induction ty; simpl; intros; try congruence; eauto. inversion H; subst. done. Qed.
Lemma drop_qualifiers_Tbool : forall [ty],
drop_qualifiers ty = Tbool -> erase_qualifiers ty = Tbool.
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tmember_pointer : forall [ty cls ty'],
drop_qualifiers ty = Tmember_pointer cls ty' ->
erase_qualifiers ty = Tmember_pointer cls (erase_qualifiers ty').
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
Lemma drop_qualifiers_Tfloat : forall [ty sz],
drop_qualifiers ty = Tfloat_ sz -> erase_qualifiers ty = Tfloat_ sz.
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
(* Omit Tqualified on purpose *)
Lemma drop_qualifiers_Tnullptr : forall [ty],
drop_qualifiers ty = Tnullptr -> erase_qualifiers ty = Tnullptr.
Proof. induction ty; simpl; intros; try congruence; eauto. Qed.
(* Same order as above, for easier review. *)
Ltac simpl_drop_qualifiers :=
match goal with
| H : drop_qualifiers _ = _ |- _ => first
[ rewrite (drop_qualifiers_Tptr H)
| rewrite (drop_qualifiers_Tref H)
| rewrite (drop_qualifiers_Trv_ref H)
| rewrite (drop_qualifiers_Tnum H)
| rewrite (drop_qualifiers_Tchar_ H)
| rewrite (drop_qualifiers_Tvoid H)
| rewrite (drop_qualifiers_Tarray H)
| rewrite (drop_qualifiers_Tnamed H)
| rewrite (drop_qualifiers_Tenum H)
| rewrite (drop_qualifiers_Tfunction H)
| rewrite (drop_qualifiers_Tbool H)
| rewrite (drop_qualifiers_Tmember_pointer H)
| rewrite (drop_qualifiers_Tfloat H)
| rewrite (drop_qualifiers_Tnullptr H)
]
end.
Ltac simpl_drop_qualifiers :=
match goal with
| H : drop_qualifiers _ = _ |- _ => first
[ rewrite (drop_qualifiers_Tptr H)
| rewrite (drop_qualifiers_Tref H)
| rewrite (drop_qualifiers_Trv_ref H)
| rewrite (drop_qualifiers_Tnum H)
| rewrite (drop_qualifiers_Tchar_ H)
| rewrite (drop_qualifiers_Tvoid H)
| rewrite (drop_qualifiers_Tarray H)
| rewrite (drop_qualifiers_Tnamed H)
| rewrite (drop_qualifiers_Tenum H)
| rewrite (drop_qualifiers_Tfunction H)
| rewrite (drop_qualifiers_Tbool H)
| rewrite (drop_qualifiers_Tmember_pointer H)
| rewrite (drop_qualifiers_Tfloat H)
| rewrite (drop_qualifiers_Tnullptr H)
]
end.
is_ref t decides if t a reference type
Note: is_ref is incompatible with the equivalence on types.
Counterexample: Tqualified QM (Tref t) ≡ Tref t.
Definition is_ref (t : type) : bool :=
if t is (Tref _ | Trv_ref _) then true else false.
Lemma is_ref_spec t : is_ref t <-> ∃ t', t = Tref t' \/ t = Trv_ref t'.
Proof. split=>Href. by destruct t; eauto. by destruct Href as (?&[-> | ->]). Qed.
Lemma is_ref_unqualified t : is_ref t -> ~~ is_qualified t.
Proof. by destruct t. Qed.
Lemma is_ref_drop_qualifiers t : is_ref t -> is_ref (drop_qualifiers t).
Proof. by destruct t. Qed.
if t is (Tref _ | Trv_ref _) then true else false.
Lemma is_ref_spec t : is_ref t <-> ∃ t', t = Tref t' \/ t = Trv_ref t'.
Proof. split=>Href. by destruct t; eauto. by destruct Href as (?&[-> | ->]). Qed.
Lemma is_ref_unqualified t : is_ref t -> ~~ is_qualified t.
Proof. by destruct t. Qed.
Lemma is_ref_drop_qualifiers t : is_ref t -> is_ref (drop_qualifiers t).
Proof. by destruct t. Qed.
Definition is_QM (cv : type_qualifiers) : bool :=
if cv is QM then true else false.
Lemma is_QM_spec cv : is_QM cv <-> cv = QM.
Proof. by destruct cv. Qed.
Lemma is_QM_bool_decide cv : is_QM cv = bool_decide (cv = QM).
Proof. by destruct cv. Qed.
if cv is QM then true else false.
Lemma is_QM_spec cv : is_QM cv <-> cv = QM.
Proof. by destruct cv. Qed.
Lemma is_QM_bool_decide cv : is_QM cv = bool_decide (cv = QM).
Proof. by destruct cv. Qed.
Variant tqualified'_spec : type_qualifiers -> type -> type -> Prop :=
| tqualified'_spec_ref q t : is_ref t -> tqualified'_spec q t t
| tqualified'_spec_unqual t : ~~ is_ref t -> tqualified'_spec QM t t
| tqualified'_spec_qual q t : ~~ is_ref t -> ~~ is_QM q -> tqualified'_spec q t (Tqualified q t)
.
#[local] Hint Constructors tqualified'_spec : core.
Lemma tqualified'_ok q t : tqualified'_spec q t (tqualified' q t).
Proof.
rewrite /tqualified'. destruct (boolP (is_ref t)); [by destruct t; auto|].
destruct t; try done.
all: destruct (boolP (is_QM q)); by destruct q; auto.
Qed.
Lemma tqualified'_equiv q t : tqualified' q t ≡ Tqualified q t.
Proof.
case: (tqualified'_ok q t).
{ intros ?? (?&[-> | ->])%is_ref_spec.
by rewrite Tqualified_ref. by rewrite Tqualified_rv_ref. }
{ intros. by rewrite Tqualified_id. }
{ done. }
Qed.
#[global] Instance: Params (@tqualified') 1 := {}.
#[global] Instance tqualified'_proper q : Proper (equiv ==> equiv) (tqualified' q).
Proof. intros t1 t2 Ht. by rewrite !tqualified'_equiv Ht. Qed.
Lemma tqualified'_ref q t : is_ref t -> tqualified' q t = t.
Proof. by destruct t. Qed.
Lemma tqualified'_QM t : tqualified' QM t = t.
Proof. by destruct t. Qed.
Lemma tqualified'_non_ref q t : ~~ is_ref t -> ~~ is_QM q -> tqualified' q t = Tqualified q t.
Proof. by destruct t, q. Qed.
Lemma tqualified_ok q t : qual_norm_spec tqualified' q t (tqualified q t).
Proof. apply qual_norm'_ok. Qed.
Lemma tqualified_equiv q t : tqualified q t ≡ Tqualified q t.
Proof.
induction (tqualified_ok q t).
{ by rewrite tqualified'_equiv. }
{ by rewrite Tqualified_merge. }
Qed.
#[global] Instance: Params (@tqualified) 1 := {}.
#[global] Instance tqualified_proper q : Proper (equiv ==> equiv) (tqualified q).
Proof. intros t1 t2 Ht. by rewrite !tqualified_equiv Ht. Qed.
Lemma tqualified_tqualified' q t : tqualified q t ≡ tqualified' q t.
Proof. by rewrite tqualified_equiv tqualified'_equiv. Qed.
Lemma tqualified_qual_norm' q t : tqualified q t = qual_norm' tqualified' q t.
Proof. done. Qed.
Lemma tqualified_decompose_type q t :
tqualified q t =
let p := decompose_type t in
tqualified' (merge_tq q p.1) p.2.
Proof.
by rewrite tqualified_qual_norm' qual_norm'_decompose_type.
Qed.
Lemma tqualified_unqual q t : ~~ is_qualified t -> tqualified q t = tqualified' q t.
Proof. intros. by rewrite /tqualified qual_norm'_unqual. Qed.
Lemma tqualified_idemp q1 q2 t :
tqualified q1 (tqualified q2 t) = tqualified (merge_tq q1 q2) t.
Proof.
elim: (tqualified_ok q2 t) q1; last first.
{ intros ????? IH ?. rewrite {}IH /=. by rewrite !assoc_L. }
intros q2' t' ? q1. destruct (tqualified'_ok q2' t').
- rewrite !tqualified_unqual//. by rewrite !tqualified'_ref.
- rewrite !tqualified_unqual//. by rewrite right_id_L.
- done.
Qed.
Lemma drop_qualifiers_tqualified q t :
drop_qualifiers (tqualified q t) = drop_qualifiers t.
Proof.
induction (tqualified_ok q t).
{ by destruct (tqualified'_ok q t). }
{ done. }
Qed.
Lemma erase_qualifiers_tqualified q t :
erase_qualifiers (tqualified q t) = erase_qualifiers t.
Proof.
induction (tqualified_ok q t).
{ by destruct (tqualified'_ok q t). }
{ done. }
Qed.
Inductive tref_spec : type_qualifiers -> type -> type -> Prop :=
| tref_spec_nonref_unqual q t : ~~ is_ref t -> ~~ is_qualified t -> tref_spec q t (Tref $ tqualified q t)
| tref_spec_ref q t ret : tref_spec QM t ret -> tref_spec q (Tref t) ret
| tref_spec_rv_ref q t ret : tref_spec QM t ret -> tref_spec q (Trv_ref t) ret
| tref_spec_qual q q' t ret : tref_spec (merge_tq q q') t ret -> tref_spec q (Tqualified q' t) ret
.
#[local] Hint Constructors tref_spec : core.
Lemma tref_ok q t : tref_spec q t (tref q t).
Proof. revert q. induction t; auto. Qed.
(*
Lemma tref_equiv' q t : tref q t ≡ Tref (Tqualified q t).
Proof.
elim: (tref_ok q t).
{ intros. by rewrite tqualified_equiv. }
{ intros ???? ->. by rewrite Tqualified_id Tqualified_ref Tref_ref. }
{ intros ???? ->. by rewrite Tqualified_id Tqualified_rv_ref Tref_rv_ref. }
{ intros. by rewrite Tqualified_merge. }
Qed.
Lemma tref_equiv t : tref QM t ≡ Tref t.
Proof. by rewrite tref_equiv' Tqualified_id. Qed.
[global] Instance: Params (@tref) 1 := {}. global Instance tref_proper q : Proper (equiv ==> equiv) (tref q).
Proof. intros t1 t2 Ht. by rewrite !tref_equiv' Ht. Qed.
*)
Lemma tref_unfold q t :
tref q t =
qual_norm' (fun q' t' =>
match t' with
| Tref t'' | Trv_ref t'' => tref QM t''
| _ => Tref (tqualified q' t')
end
) q t.
Proof. move: q. by induction t; cbn. Qed.
Inductive trv_ref_spec : type_qualifiers -> type -> type -> Prop :=
| trv_ref_nonref_unqual q t : ~~ is_ref t -> ~~ is_qualified t -> trv_ref_spec q t (Trv_ref $ tqualified q t)
| trv_ref_spec_ref q t : trv_ref_spec q (Tref t) (tref QM t)
| trv_ref_spec_rv_ref q t ret : trv_ref_spec QM t ret -> trv_ref_spec q (Trv_ref t) ret
| trv_ref_spec_qual q q' t ret : trv_ref_spec (merge_tq q q') t ret -> trv_ref_spec q (Tqualified q' t) ret
.
#[local] Hint Constructors trv_ref_spec : core.
Lemma trv_ref_ok q t : trv_ref_spec q t (trv_ref q t).
Proof. revert q; induction t; auto. Qed.
(*
Lemma trv_ref_equiv' q t : trv_ref q t ≡ Trv_ref (Tqualified q t).
Proof.
elim: (trv_ref_ok q t).
{ intros. by rewrite tqualified_equiv. }
{ intros. by rewrite tref_equiv' Tqualified_id Tqualified_ref Trv_ref_ref. }
{ intros ???? ->. by rewrite Tqualified_id Tqualified_rv_ref Trv_ref_rv_ref. }
{ intros. by rewrite Tqualified_merge. }
Qed.
Lemma trv_ref_equiv t : trv_ref QM t ≡ Trv_ref t.
Proof. by rewrite trv_ref_equiv' Tqualified_id. Qed.
[global] Instance: Params (@trv_ref) 1 := {}. global Instance trv_ref_proper q : Proper (equiv ==> equiv) (trv_ref q).
Proof. intros t1 t2 Ht. by rewrite !trv_ref_equiv' Ht. Qed.
*)
Lemma trv_ref_unfold q t :
trv_ref q t =
qual_norm' (fun q' t' =>
match t' with
| Tref t'' => tref QM t''
| Trv_ref t'' => trv_ref QM t''
| _ => Trv_ref (tqualified q' t')
end
) q t.
Proof. move: q. by induction t; cbn. Qed.
Definition to_arg_type : type -> type :=
qual_norm (fun cv t =>
match t with
| Tarray ety _
| Tvariable_array ety _
| Tincomplete_array ety => Tptr ety
| _ => t (* the outer qualifiers do not factor into the type *)
end).
Lemma to_arg_type_idempotent : forall t, to_arg_type (to_arg_type t) = to_arg_type t.
Proof.
rewrite /to_arg_type/=/qual_norm/=. intro t.
rewrite !qual_norm'_decompose_type.
destruct (decompose_type t) eqn:Heq.
simpl. destruct t1; simpl; eauto.
exfalso.
generalize (is_qualified_decompose_type t). rewrite Heq. auto.
Qed.
normalization of types
- compresses adjacent Tqualified constructors
- drops (irrelevant) qualifiers on function arguments
Fixpoint normalize_type' (cv : type_qualifiers) (t : type) : type :=
let normalize_type := normalize_type' QM in
match t with
| Tptr t => tqualified cv $ Tptr (normalize_type t)
| Tref t => Tref (normalize_type t)
| Trv_ref t => Trv_ref (normalize_type t)
| Tarray t n => Tarray (normalize_type' cv t) n
| Tincomplete_array t => Tincomplete_array (normalize_type' cv t)
| Tvariable_array t e => Tvariable_array (normalize_type' cv t) e
| Tfunction ft =>
Tfunction $ FunctionType (ft_cc:=ft.(ft_cc)) (ft_arity:=ft.(ft_arity))
(normalize_type ft.(ft_return))
(List.map (fun t => to_arg_type $ normalize_type' QM t) ft.(ft_params))
| Tmember_pointer gn t => Tmember_pointer gn (normalize_type t)
| Tqualified q t => normalize_type' (merge_tq cv q) t
| Tnum _ _
| Tchar_ _
| Tbool
| Tvoid
| Tnamed _
| Tenum _
| Tnullptr
| Tfloat_ _
| Tarch _ _ => tqualified cv t
| Tunsupported _ => tqualified cv t
| Tparam _
| Tresult_param _
| Tresult_global _
| Tresult_unop _ _ | Tresult_binop _ _ _ | Tresult_call _ _ | Tresult_member_call _ _ _
| Tresult_parenlist _ _
| Tresult_member _ _
| Tdecltype _ => tqualified cv t
| Texprtype _ => tqualified cv t
end.
Notation normalize_type := (normalize_type' QM).
Definition normalize_arg_type (t : type) : type :=
to_arg_type $ normalize_type t.
Fixpoint normalize_type'_idempotent ty {struct ty}: forall cv1 cv2,
normalize_type' cv1 (normalize_type' cv2 ty) = normalize_type' (merge_tq cv1 cv2) ty
with to_arg_type_normalize_type'_idempotent ty {struct ty} : forall cv,
normalize_type' QM (to_arg_type $ normalize_type' cv ty) = to_arg_type (normalize_type' cv ty).
Proof.
{ destruct ty; simpl; try solve [ destruct cv1, cv2; clear; eauto ].
all: try solve [ intros; f_equal; apply normalize_type'_idempotent ].
{ destruct cv1, cv2; simpl; f_equal; try first [ apply normalize_type'_idempotent
| f_equal; apply normalize_type'_idempotent ]. }
{ intros. do 2 f_equal. apply normalize_type'_idempotent.
induction (ft_params t); simpl; f_equal; [ | apply IHl ].
rewrite to_arg_type_normalize_type'_idempotent.
by rewrite to_arg_type_idempotent. }
{ intros; rewrite normalize_type'_idempotent.
by rewrite assoc_L. } }
{ destruct ty; simpl; try solve [ destruct cv; clear; eauto ].
all: try by destruct cv; rewrite /=/to_arg_type/=/qual_norm/=; rewrite normalize_type'_idempotent.
all: try by rewrite /=/to_arg_type/=/qual_norm/=; rewrite normalize_type'_idempotent.
{ rewrite /=/to_arg_type/=/qual_norm/=; rewrite normalize_type'_idempotent.
intros. do 2 f_equal.
induction (ft_params t); simpl; f_equal; [ | apply IHl ].
rewrite to_arg_type_normalize_type'_idempotent.
etrans; [ eapply to_arg_type_idempotent | ]. done. }
{ intros. rewrite to_arg_type_normalize_type'_idempotent. done. } }
Qed.
Lemma normalize_type_idempotent ty : normalize_type (normalize_type ty) = normalize_type ty.
Proof. apply normalize_type'_idempotent. Qed.
Definition normalize_arg_type_idempotent : forall t,
normalize_arg_type (normalize_arg_type t) = normalize_arg_type t.
Proof.
by intros; rewrite /normalize_arg_type to_arg_type_normalize_type'_idempotent to_arg_type_idempotent.
Qed.
let normalize_type := normalize_type' QM in
match t with
| Tptr t => tqualified cv $ Tptr (normalize_type t)
| Tref t => Tref (normalize_type t)
| Trv_ref t => Trv_ref (normalize_type t)
| Tarray t n => Tarray (normalize_type' cv t) n
| Tincomplete_array t => Tincomplete_array (normalize_type' cv t)
| Tvariable_array t e => Tvariable_array (normalize_type' cv t) e
| Tfunction ft =>
Tfunction $ FunctionType (ft_cc:=ft.(ft_cc)) (ft_arity:=ft.(ft_arity))
(normalize_type ft.(ft_return))
(List.map (fun t => to_arg_type $ normalize_type' QM t) ft.(ft_params))
| Tmember_pointer gn t => Tmember_pointer gn (normalize_type t)
| Tqualified q t => normalize_type' (merge_tq cv q) t
| Tnum _ _
| Tchar_ _
| Tbool
| Tvoid
| Tnamed _
| Tenum _
| Tnullptr
| Tfloat_ _
| Tarch _ _ => tqualified cv t
| Tunsupported _ => tqualified cv t
| Tparam _
| Tresult_param _
| Tresult_global _
| Tresult_unop _ _ | Tresult_binop _ _ _ | Tresult_call _ _ | Tresult_member_call _ _ _
| Tresult_parenlist _ _
| Tresult_member _ _
| Tdecltype _ => tqualified cv t
| Texprtype _ => tqualified cv t
end.
Notation normalize_type := (normalize_type' QM).
Definition normalize_arg_type (t : type) : type :=
to_arg_type $ normalize_type t.
Fixpoint normalize_type'_idempotent ty {struct ty}: forall cv1 cv2,
normalize_type' cv1 (normalize_type' cv2 ty) = normalize_type' (merge_tq cv1 cv2) ty
with to_arg_type_normalize_type'_idempotent ty {struct ty} : forall cv,
normalize_type' QM (to_arg_type $ normalize_type' cv ty) = to_arg_type (normalize_type' cv ty).
Proof.
{ destruct ty; simpl; try solve [ destruct cv1, cv2; clear; eauto ].
all: try solve [ intros; f_equal; apply normalize_type'_idempotent ].
{ destruct cv1, cv2; simpl; f_equal; try first [ apply normalize_type'_idempotent
| f_equal; apply normalize_type'_idempotent ]. }
{ intros. do 2 f_equal. apply normalize_type'_idempotent.
induction (ft_params t); simpl; f_equal; [ | apply IHl ].
rewrite to_arg_type_normalize_type'_idempotent.
by rewrite to_arg_type_idempotent. }
{ intros; rewrite normalize_type'_idempotent.
by rewrite assoc_L. } }
{ destruct ty; simpl; try solve [ destruct cv; clear; eauto ].
all: try by destruct cv; rewrite /=/to_arg_type/=/qual_norm/=; rewrite normalize_type'_idempotent.
all: try by rewrite /=/to_arg_type/=/qual_norm/=; rewrite normalize_type'_idempotent.
{ rewrite /=/to_arg_type/=/qual_norm/=; rewrite normalize_type'_idempotent.
intros. do 2 f_equal.
induction (ft_params t); simpl; f_equal; [ | apply IHl ].
rewrite to_arg_type_normalize_type'_idempotent.
etrans; [ eapply to_arg_type_idempotent | ]. done. }
{ intros. rewrite to_arg_type_normalize_type'_idempotent. done. } }
Qed.
Lemma normalize_type_idempotent ty : normalize_type (normalize_type ty) = normalize_type ty.
Proof. apply normalize_type'_idempotent. Qed.
Definition normalize_arg_type_idempotent : forall t,
normalize_arg_type (normalize_arg_type t) = normalize_arg_type t.
Proof.
by intros; rewrite /normalize_arg_type to_arg_type_normalize_type'_idempotent to_arg_type_idempotent.
Qed.
Qualifier-aware type operations
Definition unptr (t : exprtype) : option exprtype :=
match drop_qualifiers t with
| Tptr p => Some p
| _ => None
end.
(* array_type t extracts element type of the array or fails. *)
Definition array_type : exprtype -> option exprtype :=
qual_norm (fun cv ty =>
match ty with
| Tarray ety _
| Tincomplete_array ety
| Tvariable_array ety _ => Some $ tqualified cv ety
| _ => None
end).
match drop_qualifiers t with
| Tptr p => Some p
| _ => None
end.
(* array_type t extracts element type of the array or fails. *)
Definition array_type : exprtype -> option exprtype :=
qual_norm (fun cv ty =>
match ty with
| Tarray ety _
| Tincomplete_array ety
| Tvariable_array ety _ => Some $ tqualified cv ety
| _ => None
end).
class_name t returns the name of the class that this type refers to
Definition class_name (t : type) : option (name' lang) :=
match drop_qualifiers t with
| Tnamed gn => Some gn
| _ => None
end.
match drop_qualifiers t with
| Tnamed gn => Some gn
| _ => None
end.
Definition is_arithmetic (ty : type) : bool :=
match drop_qualifiers ty with
| Tnum _ _
| Tchar_ _
| Tenum _
| Tbool => true
| _ => false
end.
(* as_function ty returns the function_type' if ty is a function type. *)
Definition as_function {lang} (ty : functype' lang) : option (function_type' lang) :=
match ty with
| Tfunction ft => Some ft
| _ => None
end.
(* extracts the parameter information from a function type *)
Definition args_for {lang} (ft : function_type' lang)
: list (decltype' lang) * function_arity :=
(ft.(ft_params), ft.(ft_arity)).
match drop_qualifiers ty with
| Tnum _ _
| Tchar_ _
| Tenum _
| Tbool => true
| _ => false
end.
(* as_function ty returns the function_type' if ty is a function type. *)
Definition as_function {lang} (ty : functype' lang) : option (function_type' lang) :=
match ty with
| Tfunction ft => Some ft
| _ => None
end.
(* extracts the parameter information from a function type *)
Definition args_for {lang} (ft : function_type' lang)
: list (decltype' lang) * function_arity :=
(ft.(ft_params), ft.(ft_arity)).
Definition is_pointer (ty : type) : bool :=
match drop_qualifiers ty with
| Tptr _ | Tnullptr => true
| _ => false
end.
Lemma is_pointer_not_arithmetic : forall ty, is_pointer ty = true -> is_arithmetic ty = false.
Proof. induction ty; simpl; intros; eauto. Qed.
Lemma is_arithmetic_not_pointer : forall ty, is_arithmetic ty = true -> is_pointer ty = false.
Proof. induction ty; simpl; intros; eauto. Qed.
match drop_qualifiers ty with
| Tptr _ | Tnullptr => true
| _ => false
end.
Lemma is_pointer_not_arithmetic : forall ty, is_pointer ty = true -> is_arithmetic ty = false.
Proof. induction ty; simpl; intros; eauto. Qed.
Lemma is_arithmetic_not_pointer : forall ty, is_arithmetic ty = true -> is_pointer ty = false.
Proof. induction ty; simpl; intros; eauto. Qed.
Formalizes https://eel.is/c++draft/basic.types.generalterm.scalar.type.
Definition scalar_type (ty : type) : bool :=
match drop_qualifiers ty with
| Tnullptr | Tptr _
| Tmember_pointer _ _
| Tfloat_ _
| Tchar_ _
| Tbool
| Tnum _ _ | Tenum _ => true
| _ => false
end.
Lemma scalar_type_erase_drop ty :
scalar_type (erase_qualifiers ty) = scalar_type (drop_qualifiers ty).
Proof. by induction ty. Qed.
match drop_qualifiers ty with
| Tnullptr | Tptr _
| Tmember_pointer _ _
| Tfloat_ _
| Tchar_ _
| Tbool
| Tnum _ _ | Tenum _ => true
| _ => false
end.
Lemma scalar_type_erase_drop ty :
scalar_type (erase_qualifiers ty) = scalar_type (drop_qualifiers ty).
Proof. by induction ty. Qed.
is_value_type t returns true if t has value semantics. A value
type is one that can be represented by val.
NOTE: The only difference between a value type and a scalar type is
that Tvoid is a value type and not a scalar type.
Definition is_value_type (t : type) : bool :=
match drop_qualifiers t with
| Tnum _ _
| Tchar_ _
| Tbool
| Tptr _
| Tnullptr
| Tfloat_ _
| Tmember_pointer _ _
match drop_qualifiers t with
| Tnum _ _
| Tchar_ _
| Tbool
| Tptr _
| Tnullptr
| Tfloat_ _
| Tmember_pointer _ _
NOTE: In C++ the the underlying type of an enumeration must be an
integral type. This definition pre-supposes t a valid enumeration.
| Tenum _ (* enum types are value types *)
| Tvoid => true
| _ => false
end.
Lemma is_value_type_erase_qualifiers ty :
is_value_type (erase_qualifiers ty) = is_value_type ty.
Proof. induction ty; cbn; auto. Qed.
Lemma is_value_type_drop_qualifiers ty :
is_value_type (drop_qualifiers ty) = is_value_type ty.
Proof. induction ty; cbn; auto. Qed.
Lemma is_value_type_qual_norm' q t :
is_value_type t = qual_norm' (fun _ t' => is_value_type t') q t.
Proof. by elim: (qual_norm'_ok _ q t). Qed.
Lemma is_value_type_qual_norm t :
is_value_type t = qual_norm (fun _ t' => is_value_type t') t.
Proof. apply is_value_type_qual_norm'. Qed.
Lemma is_value_type_decompose_type t :
is_value_type t = is_value_type (decompose_type t).2.
Proof. by rewrite is_value_type_qual_norm qual_norm_decompose_type. Qed.
| Tvoid => true
| _ => false
end.
Lemma is_value_type_erase_qualifiers ty :
is_value_type (erase_qualifiers ty) = is_value_type ty.
Proof. induction ty; cbn; auto. Qed.
Lemma is_value_type_drop_qualifiers ty :
is_value_type (drop_qualifiers ty) = is_value_type ty.
Proof. induction ty; cbn; auto. Qed.
Lemma is_value_type_qual_norm' q t :
is_value_type t = qual_norm' (fun _ t' => is_value_type t') q t.
Proof. by elim: (qual_norm'_ok _ q t). Qed.
Lemma is_value_type_qual_norm t :
is_value_type t = qual_norm (fun _ t' => is_value_type t') t.
Proof. apply is_value_type_qual_norm'. Qed.
Lemma is_value_type_decompose_type t :
is_value_type t = is_value_type (decompose_type t).2.
Proof. by rewrite is_value_type_qual_norm qual_norm_decompose_type. Qed.
For use in init_validR
Fixpoint zero_sized_array ty : bool :=
qual_norm (fun _ t => match t with
| Tarray ety n =>
if bool_decide (n = 0%N) then true
else zero_sized_array ety
| _ => false
end) ty.
#[global] Arguments zero_sized_array !_ /.
Lemma zero_sized_array_unfold t : forall q,
zero_sized_array t =
qual_norm' (fun _ t =>
match t with
| Tarray t n => if bool_decide (n = 0%N) then true else zero_sized_array t
| _ => false
end) q t.
Proof.
induction t; simpl; intros; auto.
{ rewrite qual_norm_unfold. rewrite /qual_norm/=.
rewrite -IHt. rewrite {2}/zero_sized_array.
destruct q0; auto. }
Qed.
Lemma zero_sized_array_erase_qualifiers t :
zero_sized_array t = zero_sized_array (erase_qualifiers t).
Proof.
induction t; simpl; auto.
{ rewrite !qual_norm_unfold -IHt. done. }
{ rewrite qual_norm_unfold.
rewrite -IHt.
erewrite zero_sized_array_unfold. done. }
Qed.
Lemma zero_sized_array_qual ty : forall t,
zero_sized_array ty = zero_sized_array (Tqualified t ty).
Proof.
intros. rewrite (zero_sized_array_erase_qualifiers (Tqualified _ _)) /=.
apply zero_sized_array_erase_qualifiers.
Qed.
qual_norm (fun _ t => match t with
| Tarray ety n =>
if bool_decide (n = 0%N) then true
else zero_sized_array ety
| _ => false
end) ty.
#[global] Arguments zero_sized_array !_ /.
Lemma zero_sized_array_unfold t : forall q,
zero_sized_array t =
qual_norm' (fun _ t =>
match t with
| Tarray t n => if bool_decide (n = 0%N) then true else zero_sized_array t
| _ => false
end) q t.
Proof.
induction t; simpl; intros; auto.
{ rewrite qual_norm_unfold. rewrite /qual_norm/=.
rewrite -IHt. rewrite {2}/zero_sized_array.
destruct q0; auto. }
Qed.
Lemma zero_sized_array_erase_qualifiers t :
zero_sized_array t = zero_sized_array (erase_qualifiers t).
Proof.
induction t; simpl; auto.
{ rewrite !qual_norm_unfold -IHt. done. }
{ rewrite qual_norm_unfold.
rewrite -IHt.
erewrite zero_sized_array_unfold. done. }
Qed.
Lemma zero_sized_array_qual ty : forall t,
zero_sized_array ty = zero_sized_array (Tqualified t ty).
Proof.
intros. rewrite (zero_sized_array_erase_qualifiers (Tqualified _ _)) /=.
apply zero_sized_array_erase_qualifiers.
Qed.
Definition is_reference_type (t : type) : bool :=
is_ref (drop_qualifiers t).
Lemma is_ref_incl t : is_ref t -> is_reference_type t.
Proof. apply is_ref_drop_qualifiers. Qed.
Lemma value_type_non_ref {ty} : is_value_type ty -> ~~ is_reference_type ty.
Proof. by induction ty. Qed.
Lemma is_reference_type_erase_qualifiers t :
is_reference_type (erase_qualifiers t) = is_reference_type t.
Proof. induction t; cbn; auto. Qed.
Lemma is_reference_type_drop_qualifiers t :
is_reference_type (drop_qualifiers t) = is_reference_type t.
Proof. induction t; cbn; auto. Qed.
Lemma is_reference_type_qual_norm' q t :
is_reference_type t = qual_norm' (fun _ t => is_reference_type t) q t.
Proof. by elim: (qual_norm'_ok _ q t). Qed.
Lemma is_reference_type_qual_norm t :
is_reference_type t = qual_norm (fun _ t => is_reference_type t) t.
Proof. apply is_reference_type_qual_norm'. Qed.
Lemma is_reference_type_decompose_type t :
is_reference_type t = is_reference_type (decompose_type t).2.
Proof. by rewrite is_reference_type_qual_norm qual_norm_decompose_type. Qed.
is_ref (drop_qualifiers t).
Lemma is_ref_incl t : is_ref t -> is_reference_type t.
Proof. apply is_ref_drop_qualifiers. Qed.
Lemma value_type_non_ref {ty} : is_value_type ty -> ~~ is_reference_type ty.
Proof. by induction ty. Qed.
Lemma is_reference_type_erase_qualifiers t :
is_reference_type (erase_qualifiers t) = is_reference_type t.
Proof. induction t; cbn; auto. Qed.
Lemma is_reference_type_drop_qualifiers t :
is_reference_type (drop_qualifiers t) = is_reference_type t.
Proof. induction t; cbn; auto. Qed.
Lemma is_reference_type_qual_norm' q t :
is_reference_type t = qual_norm' (fun _ t => is_reference_type t) q t.
Proof. by elim: (qual_norm'_ok _ q t). Qed.
Lemma is_reference_type_qual_norm t :
is_reference_type t = qual_norm (fun _ t => is_reference_type t) t.
Proof. apply is_reference_type_qual_norm'. Qed.
Lemma is_reference_type_decompose_type t :
is_reference_type t = is_reference_type (decompose_type t).2.
Proof. by rewrite is_reference_type_qual_norm qual_norm_decompose_type. Qed.
as_ref' f x t applies f u if t is a (possibly cv-qualified)
reference type with underlying type u, defaulting to x if t is
not a reference type.
The special cases as_ref t : type and as_ref_option : option type
return the underlying type u (defaulting, respectively, to a dummy
type and to None).
Definition as_ref' {A} (f : exprtype' lang -> A) (x : A) (t : type) : A :=
if drop_qualifiers t is (Tref u | Trv_ref u) then f u else x.
Notation as_ref := (as_ref' (fun u => u) Tvoid).
Notation as_ref_option := (as_ref' Some None).
Lemma as_ref'_erase_qualifiers {A} (f : exprtype' lang -> A) (x : A) t :
as_ref' f x (erase_qualifiers t) = as_ref' (f ∘ erase_qualifiers) x t.
Proof. induction t; cbn; auto. Qed.
Lemma as_ref_erase_qualifiers t :
as_ref (erase_qualifiers t) = erase_qualifiers (as_ref t).
Proof. induction t; cbn; auto. Qed.
Section as_ref'.
Context {A : Type} (f : exprtype' lang -> A) (x : A).
#[local] Notation as_ref' := (as_ref' f x).
Lemma as_ref_drop_qualifiers t : as_ref' (drop_qualifiers t) = as_ref' t.
Proof. induction t; cbn; auto. Qed.
Lemma as_ref_qual_norm' q t : as_ref' t = qual_norm' (fun _ t => as_ref' t) q t.
Proof. by elim: (qual_norm'_ok _ q t). Qed.
Lemma as_ref_qual_norm t : as_ref' t = qual_norm (fun _ t => as_ref' t) t.
Proof. apply as_ref_qual_norm'. Qed.
Lemma as_ref_decompose_type t : as_ref' t = as_ref' (decompose_type t).2.
Proof. by rewrite as_ref_qual_norm qual_norm_decompose_type. Qed.
End as_ref'.
Definition is_aggregate_type (ty : type) : bool :=
match drop_qualifiers ty with
| Tnamed _ | Tarray _ _ => true
| _ => false
end.
Lemma is_aggregate_type_drop_qualifiers ty :
is_aggregate_type (drop_qualifiers ty) = is_aggregate_type ty.
Proof.
by rewrite /is_aggregate_type drop_qualifiers_idemp.
Qed.
Lemma is_aggregate_type_erase_qualifiers ty :
is_aggregate_type (erase_qualifiers ty) = is_aggregate_type ty.
Proof. by induction ty. Qed.
Lemma is_aggregate_type_qual_norm' cv ty :
is_aggregate_type ty = qual_norm' (fun _ ty' => is_aggregate_type ty') cv ty.
Proof. by elim: (qual_norm'_ok _ _ _). Qed.
Lemma is_aggregate_type_qual_norm ty :
is_aggregate_type ty = qual_norm (fun _ ty' => is_aggregate_type ty') ty.
Proof. apply is_aggregate_type_qual_norm'. Qed.
Lemma is_aggregate_type_decompose_type ty :
is_aggregate_type ty = is_aggregate_type (decompose_type ty).2.
Proof.
by rewrite is_aggregate_type_qual_norm qual_norm_decompose_type.
Qed.
Lemma aggregate_type_non_ref ty : is_aggregate_type ty -> ~~ is_reference_type ty.
Proof. by induction ty. Qed.
Lemma aggregate_type_non_val ty : is_aggregate_type ty -> ~~ is_value_type ty.
Proof. by induction ty. Qed.
Lemma decompose_type_erase_qualifiers ty
: decompose_type (erase_qualifiers ty) = (QM, erase_qualifiers ty).
Proof.
induction ty; simpl; intros; eauto.
Qed.
match drop_qualifiers ty with
| Tnamed _ | Tarray _ _ => true
| _ => false
end.
Lemma is_aggregate_type_drop_qualifiers ty :
is_aggregate_type (drop_qualifiers ty) = is_aggregate_type ty.
Proof.
by rewrite /is_aggregate_type drop_qualifiers_idemp.
Qed.
Lemma is_aggregate_type_erase_qualifiers ty :
is_aggregate_type (erase_qualifiers ty) = is_aggregate_type ty.
Proof. by induction ty. Qed.
Lemma is_aggregate_type_qual_norm' cv ty :
is_aggregate_type ty = qual_norm' (fun _ ty' => is_aggregate_type ty') cv ty.
Proof. by elim: (qual_norm'_ok _ _ _). Qed.
Lemma is_aggregate_type_qual_norm ty :
is_aggregate_type ty = qual_norm (fun _ ty' => is_aggregate_type ty') ty.
Proof. apply is_aggregate_type_qual_norm'. Qed.
Lemma is_aggregate_type_decompose_type ty :
is_aggregate_type ty = is_aggregate_type (decompose_type ty).2.
Proof.
by rewrite is_aggregate_type_qual_norm qual_norm_decompose_type.
Qed.
Lemma aggregate_type_non_ref ty : is_aggregate_type ty -> ~~ is_reference_type ty.
Proof. by induction ty. Qed.
Lemma aggregate_type_non_val ty : is_aggregate_type ty -> ~~ is_value_type ty.
Proof. by induction ty. Qed.
Lemma decompose_type_erase_qualifiers ty
: decompose_type (erase_qualifiers ty) = (QM, erase_qualifiers ty).
Proof.
induction ty; simpl; intros; eauto.
Qed.
Heap Types
int*
points to a memory cell that is
mutable. Generally, this will be true, but constructs such as
const_cast<
> and casting through pointers explicitly circumvent this.
To track this, the C++ abstract machine tracks locations with "heap types"
which are decltypes with all qualifiers erased and top-level references
normalized to Tref.
-
const int x = 1
-- tptsto Tint (cQp.m 1) _ 1 -
const int* x = nullptr
-- tptsto (Tptr Tint) (cQp.m 1) _ nullptr -
int* const x = nullptr
-- tptsto (Tptr Tint) (cQp.c 1) _ nullptr -
volatile int x = 0
-- not represted using tptsto -
volatile int* p = nullptr
-- tptsto (Tptr Tint) (cQp.m 1) _ nullptr -
int&& r = ..
-- tptsto (Tref Tint) (cQp.m 1) _ _
Definition heap_type : Set := type.
Definition is_heap_type (t : type) : bool :=
bool_decide (t = erase_qualifiers t)
&& (is_value_type t || match t with
| Tref _ => true
| _ => false
end).
(* get the heap_type representation of the given type *)
Definition to_heap_type (t : type) : heap_type :=
match erase_qualifiers t with
| Trv_ref t => Tref t
| t => t
end.
Lemma to_heap_type_qualified cv t : to_heap_type (Tqualified cv t) = to_heap_type t.
Proof. done. Qed.
Lemma heap_type_not_qualified cv t : is_heap_type (Tqualified cv t) -> False.
Proof.
rewrite /is_heap_type. case_bool_decide => /=; eauto.
exfalso; eapply unqual_erase_qualifiers; eauto.
Qed.
Definition is_volatile : type -> bool :=
qual_norm (fun cv _ => q_volatile cv).
(* Tmember_func ty fty constructs the function type for a
member function that takes a this parameter of ty
TODO technically the this parameter is const.
*)
Definition Tmember_func {lang} (ty : exprtype' lang) (fty : functype' lang) : functype' lang :=
match fty with
| Tfunction ft => Tfunction $ {| ft_cc := ft.(ft_cc) ; ft_arity := ft.(ft_arity)
; ft_return := ft.(ft_return) ; ft_params := Tptr ty :: ft.(ft_params) |}
| _ => fty
end.
End with_lang.
Notation normalize_type := (normalize_type' QM).
Notation as_ref := (as_ref' (fun u => u) Tvoid).
Notation as_ref_option := (as_ref' Some None).
#[global] Hint Resolve is_qualified_decompose_type | 0 : core.
#[global] Hint Resolve is_qualified_drop_qualifiers | 0 : core.
Definition is_heap_type (t : type) : bool :=
bool_decide (t = erase_qualifiers t)
&& (is_value_type t || match t with
| Tref _ => true
| _ => false
end).
(* get the heap_type representation of the given type *)
Definition to_heap_type (t : type) : heap_type :=
match erase_qualifiers t with
| Trv_ref t => Tref t
| t => t
end.
Lemma to_heap_type_qualified cv t : to_heap_type (Tqualified cv t) = to_heap_type t.
Proof. done. Qed.
Lemma heap_type_not_qualified cv t : is_heap_type (Tqualified cv t) -> False.
Proof.
rewrite /is_heap_type. case_bool_decide => /=; eauto.
exfalso; eapply unqual_erase_qualifiers; eauto.
Qed.
Definition is_volatile : type -> bool :=
qual_norm (fun cv _ => q_volatile cv).
(* Tmember_func ty fty constructs the function type for a
member function that takes a this parameter of ty
TODO technically the this parameter is const.
*)
Definition Tmember_func {lang} (ty : exprtype' lang) (fty : functype' lang) : functype' lang :=
match fty with
| Tfunction ft => Tfunction $ {| ft_cc := ft.(ft_cc) ; ft_arity := ft.(ft_arity)
; ft_return := ft.(ft_return) ; ft_params := Tptr ty :: ft.(ft_params) |}
| _ => fty
end.
End with_lang.
Notation normalize_type := (normalize_type' QM).
Notation as_ref := (as_ref' (fun u => u) Tvoid).
Notation as_ref_option := (as_ref' Some None).
#[global] Hint Resolve is_qualified_decompose_type | 0 : core.
#[global] Hint Resolve is_qualified_drop_qualifiers | 0 : core.