bedrock.lang.cpp.semantics.cast

(*
 * Copyright (c) 2020-23 BedRock Systems, Inc.
 * This software is distributed under the terms of the BedRock Open-Source License.
 * See the LICENSE-BedRock file in the repository root for details.
 *)

Primitive Conversions

This file covers conversions between primitive types.
Require Import elpi.apps.locker.locker.

Require Import bedrock.prelude.base.
Require Import bedrock.prelude.numbers.
Require Export bedrock.lang.cpp.arith.operator.
Require Import bedrock.lang.cpp.syntax.
Require Import bedrock.lang.cpp.semantics.values.
Require Import bedrock.lang.cpp.semantics.genv.
Require Import bedrock.lang.cpp.semantics.promotion.
Require Import bedrock.lang.cpp.semantics.characters.
Export characters.

#[local] Open Scope Z_scope.

Numeric conversions.
This includes both conversions and promotions between fundamental numeric types and enumerations (which have underlying fundamental types).
This relation only holds on well-typed values, see conv_int_well_typed.
Definition conv_int {σ : genv} (tu : translation_unit) (from to : type) (v v' : val) : Prop :=
  has_type_prop v from /\
  match representation_type tu from , representation_type tu to with
  | Tbool , Tnum _ _ =>
      match is_true v with
      | Some v => v' = Vbool v
      | _ => False
      end
  | Tbool , Tchar_ _ =>
      match is_true v with
      | Some v => v' = Vchar (if v then 1 else 0)%N
      | _ => False
      end
  | Tnum _ _ , Tbool =>
      match v with
      | Vint v => v' = Vbool (bool_decide (v <> 0))
      | _ => False
      end
  | Tnum _ _ , Tnum sz Unsigned =>
      match v with
      | Vint v => v' = Vint (to_unsigned (int_rank.bitsize sz) v)
      | _ => False
      end
  | Tnum _ _ , Tnum sz Signed =>
      (* Prior to C++20, conversions to signed integer types were implementation
         defined if the source value can not be represented in the target value *)

      has_type_prop v (Tnum sz Signed) /\ v' = v
  | Tbool , Tbool => v = v'
  | Tchar_ _ , Tbool =>
      match v with
      | Vchar v => v' = Vbool (bool_decide (v <> 0%N))
      | _ => False
      end
  | Tnum sz sgn , Tchar_ ct =>
      match v with
      | Vint v =>
          v' = Vchar (to_char (int_rank.bitsN sz) sgn (char_type.bitsN ct) v)
      | _ => False
      end
  | Tchar_ ct , Tnum sz sgn =>
      match v with
      | Vchar v => v' = Vint (of_char (char_type.bitsN ct) (signedness_of_char σ ct) (int_rank.bitsN sz) sgn v)
      | _ => False
      end
  | Tchar_ ct , Tchar_ ct' =>
      match v with
      | Vchar v => v' = Vchar (to_char (char_type.bitsN ct) Unsigned (char_type.bitsN ct') v)
      | _ => False
      end
  | Tenum _ , _
  | _ , Tenum _ (* not reachable due to representation_type *)
  | _ , _ => False
  end.
Arguments conv_int !_ !_ _ _ /.

Section conv_int.
  Context `{Hmod : tu σ}.

  (* TODO move *)
  Lemma has_type_prop_representation_type ty v :
    has_type_prop v ty -> has_type_prop v (representation_type tu ty).
  Proof using Hmod.
    induction ty; rewrite /representation_type /= //.
    { intros.
      rewrite /underlying_type.
      case_match => //.
      case_match => //.
      eapply has_type_prop_enum in H.
      destruct H as [?[?[?[?[??]]]]].
      subst.
      generalize (enum_compat (ODR Hmod H _ _ _ H0 H2)); intro; subst.
      tauto. }
    { intros.
      apply has_type_prop_qual_iff in H.
      by apply IHty. }
  Qed.

  Lemma has_type_prop_representation_type_not_raw ty v :
    ~~ is_raw v ->
    has_type_prop v ty <-> has_type_prop v (representation_type tu ty).
  Proof using Hmod.
    induction ty; rewrite /representation_type /= //.
    { split; intros.
      { rewrite /underlying_type.
        case_match => //.
        case_match => //.
        eapply has_type_prop_enum in H0.
        destruct H0 as [?[?[?[?[??]]]]].
        subst.
        generalize (enum_compat (ODR Hmod H0 _ _ _ H1 H3)); intro; subst.
        tauto. }
      { unfold underlying_type in H0.
        case_match; simpl in *; eauto.
        case_match; simpl in *; eauto.
        apply has_type_prop_enum. do 3 eexists; split; eauto. } }
    { intros.
      apply IHty in H.
      rewrite -has_type_prop_qual_iff. apply H. }
  Qed.
  (* END MOVE *)

  Lemma conv_int_well_typed ty ty' v v' :
       tu σ -> (* TODO only needed if either type is a Tenum *)
       conv_int tu ty ty' v v' ->
       has_type_prop v ty /\ has_type_prop v' ty'.
  Proof using Hmod.
    rewrite /conv_int.
    destruct (representation_type tu ty) eqn:src_ty; rewrite /=; try tauto;
    destruct (representation_type tu ty') eqn:dst_ty; rewrite /=; try tauto;
    intuition;
    match goal with
    | H : representation_type ?tu ?ty = ?ty' , H' : has_type_prop _ ?ty |- _ =>
        generalize (has_type_prop_representation_type _ _ H'); rewrite H; intro
    end; repeat (case_match; try tauto);
      repeat match goal with
        | H : _ /\ _ |- _ => destruct H
        | H : exists x, _ |- _ => destruct H
        | H : representation_type _ ?ty = ?ty2 |- has_type_prop _ ?ty =>
            eapply has_type_prop_representation_type_not_raw => /=; try congruence; try rewrite H
        end; subst; eauto.
    { destruct v; simpl; try tauto.
      eapply has_int_type' in H2.
      destruct H2 as [[?[??]] | [?[??]]]; congruence. }
    { eapply has_int_type.
      red; rewrite /=/bitsize.max_val/trim.
      generalize (Z_mod_lt z (2 ^ int_rank.bitsN sz0) ltac:(lia)).
      destruct sz0 => /=; lia. }
    { eapply has_type_prop_char.
      eexists; split; eauto.
      rewrite to_char.unlock.
      generalize (Z_mod_lt z (2 ^ char_type.bitsN t) ltac:(lia)).
      destruct t; try lia. }
    { eapply has_bool_type. case_match; lia. }
    { eapply has_int_type.
      eapply has_type_prop_char' in H0.
      red.
      generalize (of_char_bounded (char_type.bitsN t) (signedness_of_char σ t) (int_rank.bitsN sz) sgn n
                    ltac:(destruct sz; simpl; lia)
                    ltac:(destruct t; simpl; lia)).
      rewrite /bitsize.min_val/bitsize.max_val.
      destruct sgn, sz; simpl; lia. }
    { apply has_type_prop_char; eexists; split; eauto.
      apply has_type_prop_char in H0.
      destruct H0 as [?[Hinv?]]; inversion Hinv; subst.
      generalize (to_char_bounded (char_type.bitsN t) Unsigned (char_type.bitsN t0) (Z.of_N x)); eauto. }
    { eapply has_bool_type; case_match; lia. }
    { eapply has_int_type. red; destruct sz, sgn, b => /=; lia. }
    { eapply has_type_prop_char'. destruct t => /=; lia. }
    { eapply has_type_prop_char; eexists; split; eauto. destruct t => /=; lia. }
    { eapply has_type_prop_bool in H0.
      destruct H0. subst. simpl. tauto. }
  Qed.

  (* Note that a no-op conversion on a raw value is not permitted. *)
  Lemma conv_int_num_id sz sgn v :
    let ty := Tnum sz sgn in
    ~~ is_raw v ->
    has_type_prop v ty ->
    conv_int tu ty ty v v.
  Proof using Hmod.
    rewrite /=/conv_int/underlying_type/=.
    intros ? Hty. split; eauto.
    destruct sgn. split; eauto.
    apply has_int_type' in Hty.
    destruct Hty as [(? & -> & Hty) | (? & -> & ?)]; last done.
    move: Hty. rewrite /bitsize.bound/bitsize.min_val/bitsize.max_val. intros.
    rewrite to_unsigned_id//.
    destruct sz; simpl in *; lia.
  Qed.

  (* conversion is deterministic *)
  Lemma conv_int_unique from to v :
      forall v' v'', conv_int tu from to v v' ->
                conv_int tu from to v v'' ->
                v' = v''.
  Proof using Hmod.
    rewrite /conv_int.
    repeat (case_match; try tauto); intuition; try congruence.
  Qed.
End conv_int.

(* This (effectively) lifts conv_int to arbitrary types.

   TODO: it makes sense for this to mirror the properties of conv_int, but
   pointer casts require side-conditions that are only expressible in
   separation logic.
 *)

Definition convert {σ : genv} (tu : translation_unit) (from to : Rtype) (v : val) (v' : val) : Prop :=
  if is_pointer from && bool_decide (erase_qualifiers from = erase_qualifiers to) then
    (* TODO: this conservative *)
    has_type_prop v from /\ has_type_prop v' to /\ v' = v
  else if is_arithmetic from && is_arithmetic to then
    conv_int tu from to v v'
  else False.