bedrock.lang.cpp.logic.func
(*
* Copyright (c) 2020-2023 BedRock Systems, Inc.
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import elpi.apps.locker.locker.
Require Import bedrock.lang.proofmode.proofmode.
* Copyright (c) 2020-2023 BedRock Systems, Inc.
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import elpi.apps.locker.locker.
Require Import bedrock.lang.proofmode.proofmode.
Early to get the right ident
Require Import bedrock.lang.bi.ChargeCompat.
Require Import bedrock.lang.bi.errors.
Require Import bedrock.lang.cpp.logic.entailsN.
Require Import bedrock.lang.cpp.syntax.
Require Import bedrock.lang.cpp.semantics.
Require Import bedrock.lang.cpp.logic.rep_proofmode.
Require Import bedrock.lang.cpp.logic.pred.
Require Import bedrock.lang.cpp.logic.path_pred.
Require Import bedrock.lang.cpp.logic.heap_pred.
Require Import bedrock.lang.cpp.logic.wp.
Require Import bedrock.lang.cpp.logic.builtins.
Require Import bedrock.lang.cpp.logic.cptr.
Require Import bedrock.lang.cpp.logic.const.
Require Import bedrock.lang.cpp.logic.initializers.
Require Import bedrock.lang.cpp.logic.translation_unit.
Require Import bedrock.lang.cpp.logic.destroy.
(* UPSTREAM. *)
Lemma wand_frame {PROP : bi} (R Q Q' : PROP) :
Q -* Q' |--
(R -* Q) -* (R -* Q').
Proof. iIntros "Q W R". iApply ("Q" with "(W R)"). Qed.
#[local] Set Printing Coercions.
#[local] Arguments ERROR {_ _} _%_bs.
#[local] Arguments UNSUPPORTED {_ _} _%_bs.
#[local] Arguments wpi : simpl never.
Require Import bedrock.lang.bi.errors.
Require Import bedrock.lang.cpp.logic.entailsN.
Require Import bedrock.lang.cpp.syntax.
Require Import bedrock.lang.cpp.semantics.
Require Import bedrock.lang.cpp.logic.rep_proofmode.
Require Import bedrock.lang.cpp.logic.pred.
Require Import bedrock.lang.cpp.logic.path_pred.
Require Import bedrock.lang.cpp.logic.heap_pred.
Require Import bedrock.lang.cpp.logic.wp.
Require Import bedrock.lang.cpp.logic.builtins.
Require Import bedrock.lang.cpp.logic.cptr.
Require Import bedrock.lang.cpp.logic.const.
Require Import bedrock.lang.cpp.logic.initializers.
Require Import bedrock.lang.cpp.logic.translation_unit.
Require Import bedrock.lang.cpp.logic.destroy.
(* UPSTREAM. *)
Lemma wand_frame {PROP : bi} (R Q Q' : PROP) :
Q -* Q' |--
(R -* Q) -* (R -* Q').
Proof. iIntros "Q W R". iApply ("Q" with "(W R)"). Qed.
#[local] Set Printing Coercions.
#[local] Arguments ERROR {_ _} _%_bs.
#[local] Arguments UNSUPPORTED {_ _} _%_bs.
#[local] Arguments wpi : simpl never.
Weakest precondition of a constructor: Initial construction step.
mlock Definition svalid_members `{Σ : cpp_logic, σ : genv}
(cls : globname) (members : list (field_name.t lang.cpp * type)) : Rep :=
reference_toR (Tnamed cls) **
[** list] m ∈ members, _field (Field cls m.1) |-> reference_toR m.2.
#[global] Arguments svalid_members {_ _ _ _} _ _ : assert.
Section svalid_members.
Context `{Σ : cpp_logic, σ : genv}.
#[global] Instance svalid_members_persistent : Persistent2 svalid_members.
Proof. rewrite svalid_members.unlock. apply _. Qed.
#[global] Instance svalid_members_affine : Affine2 svalid_members := _.
End svalid_members.
(cls : globname) (members : list (field_name.t lang.cpp * type)) : Rep :=
reference_toR (Tnamed cls) **
[** list] m ∈ members, _field (Field cls m.1) |-> reference_toR m.2.
#[global] Arguments svalid_members {_ _ _ _} _ _ : assert.
Section svalid_members.
Context `{Σ : cpp_logic, σ : genv}.
#[global] Instance svalid_members_persistent : Persistent2 svalid_members.
Proof. rewrite svalid_members.unlock. apply _. Qed.
#[global] Instance svalid_members_affine : Affine2 svalid_members := _.
End svalid_members.
Aggregate identity
#[local]
Definition derivationsR' `{Σ : cpp_logic, σ : genv} (tu : translation_unit) (q : cQp.t) :=
fix derivationsR' (f : nat) (include_base : bool) (cls : globname) (path : list globname) : Rep :=
match f with
| 0 => ERROR "derivationsR: no fuel"
| S f =>
match tu.(types) !! cls with
| Some (Gstruct st) =>
(if include_base && has_vtable st then derivationR cls path q else emp) **
[** list] b ∈ st.(s_bases),
let base := b.1 in
_base cls base |-> derivationsR' f true base (path ++ [base])
| _ => ERROR "derivationsR: not a structure"
end
end.
Definition derivationsR' `{Σ : cpp_logic, σ : genv} (tu : translation_unit) (q : cQp.t) :=
fix derivationsR' (f : nat) (include_base : bool) (cls : globname) (path : list globname) : Rep :=
match f with
| 0 => ERROR "derivationsR: no fuel"
| S f =>
match tu.(types) !! cls with
| Some (Gstruct st) =>
(if include_base && has_vtable st then derivationR cls path q else emp) **
[** list] b ∈ st.(s_bases),
let base := b.1 in
_base cls base |-> derivationsR' f true base (path ++ [base])
| _ => ERROR "derivationsR: not a structure"
end
end.
this |-> derivationsR tu include_base cls path q is all of the
object identities of the this object (of type cls) where the most
derived class is reached from cls using path. For example,
consider the following:
derivationR "::B" ["::C","::B"] q **
_base "::B" "::A" |-> derivationR "::A" ["::C","::B","::A"] q
while derivationsR true "::C" [] q produces all the identities for
derivationR "::C" ["::C"] q **
_base "::C" "::B" |-> derivationR true "::B" ["::C"] q
class A {}; class B : public A {}; class C : public B {};here, derivationsR true "::B" ["::C"] q produces:
derivationR "::B" ["::C","::B"] q **
_base "::B" "::A" |-> derivationR "::A" ["::C","::B","::A"] q
A
, B
and C
:
derivationR "::C" ["::C"] q **
_base "::C" "::B" |-> derivationR true "::B" ["::C"] q
Definition derivationsR `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(include_base : bool) (cls : globname) (path : list globname) (q : cQp.t) : Rep :=
(include_base : bool) (cls : globname) (path : list globname) (q : cQp.t) : Rep :=
The number of global entries is an upper bound on the height of the
derivation tree.
let size := NM.cardinal σ.(genv_tu).(types) in
derivationsR' tu q size include_base cls path.
Section derivationsR.
Context `{Σ : cpp_logic, σ : genv}.
Lemma derivationsR'_sub_module tu tu' q f include_base cls path :
sub_module tu tu' ->
derivationsR' tu q f include_base cls path
|-- derivationsR' tu' q f include_base cls path.
Proof.
intros Hsub%types_compat.
move: include_base cls path. induction f; intros; cbn; first done.
case_match eqn:Hcls; last by rewrite {1}ERROR_elim; apply bi.False_elim.
specialize (Hsub _ _ Hcls). destruct Hsub as (gv' & Heq & Hsub); rewrite Heq; clear Heq.
case_match; try by rewrite {1}ERROR_elim; apply bi.False_elim.
destruct gv'; try done. cbn in Hsub. case_bool_decide; [simplify_eq|done].
f_equiv. f_equiv=>_ b. f_equiv. apply IHf.
Qed.
Lemma derivationsR_sub_module tu tu' q include_base cls path :
sub_module tu tu' ->
derivationsR tu q include_base cls path
|-- derivationsR tu' q include_base cls path.
Proof. apply derivationsR'_sub_module. Qed.
(* supports_with_fuel tu cls f states that f is sufficient fuel to cover
the entire class hierarchy of cls within the translation unit tu.
This is the pure part of derivationsR *)
Inductive supports_with_fuel (tu : translation_unit) (cls : globname) : nat -> Prop :=
| supports_S {f st}
(_ : tu.(types) !! cls = Some (Gstruct st))
(_ : List.Forall (fun b => supports_with_fuel tu b.1 f) st.(s_bases))
: supports_with_fuel tu cls (S f).
Lemma supports_big_op (PROP : bi) tu cls st f :
(tu.(types) !! cls = Some (Gstruct st)) ->
([∗list] b ∈ st.(s_bases) , [| supports_with_fuel tu b.1 f |]) |-@{PROP} [| supports_with_fuel tu cls (S f) |].
Proof.
intros.
iPureIntro. intros.
econstructor; eauto.
apply List.Forall_forall. intros.
apply elem_of_list_In in H1.
apply elem_of_list_lookup_1 in H1.
destruct H1.
eapply H0; eauto.
Qed.
Lemma derivationsR'_ok tu tu' (sub : sub_module tu tu') :
forall f f' mdc (p : ptr) cls include_base q,
f <= f' ->
p |-> derivationsR' tu q f include_base cls mdc
|-- p |-> derivationsR' tu' q f' include_base cls mdc ** [| supports_with_fuel tu cls f |].
Proof.
induction f; rewrite /derivationsR' /=; intros; try iIntros "[]".
destruct f'; try lia.
case_match; try by iIntros "[]".
case_match; try by iIntros "[]".
erewrite sub_module_preserves_gstruct; eauto.
subst. rewrite !_at_sep.
rewrite -!bi.sep_assoc.
iIntros "[X Y]". iSplitL "X".
{ case_match; try rewrite _at_emp; eauto. }
rewrite -supports_big_op; eauto.
rewrite !_at_big_sepL.
rewrite -big_sepL_sep.
iRevert "Y".
iApply big_sepL_mono.
intros.
rewrite !_at_offsetR.
rewrite (IHf f'); last lia.
eauto.
Qed.
Lemma derivationsR_ok tu tu' (sub : sub_module tu tu') :
forall mdc (p : ptr) cls include_base q,
p |-> derivationsR tu include_base cls mdc q
|-- p |-> derivationsR tu' include_base cls mdc q ** [| supports_with_fuel tu cls (NM.cardinal (types $ genv_tu σ)) |].
Proof. intros; by apply derivationsR'_ok; eauto. Qed.
Lemma derivationsR'_ok_supports tu tu' (sub : sub_module tu tu') :
forall cls f, supports_with_fuel tu cls f ->
forall f' mdc (p : ptr) include_base q, f <= f' ->
p |-> derivationsR' tu q f include_base cls mdc
-|- p |-> derivationsR' tu' q f' include_base cls mdc.
Proof.
refine (fix rec cls f X {struct X} :=
match X with
| supports_S _ _ _ _ => _
end); simpl; intros.
destruct f'; try lia. simpl.
rewrite e.
erewrite sub_module_preserves_gstruct; eauto.
rewrite !_at_sep !_at_big_sepL. f_equiv.
induction f0; simpl; eauto.
rewrite IHf0 !_at_offsetR. f_equiv.
iApply rec; eauto. lia.
Qed.
Lemma derivationsR_ok_supports tu tu' (sub : sub_module tu tu') :
forall cls, supports_with_fuel tu cls (NM.cardinal (types (genv_tu σ))) ->
forall mdc (p : ptr) include_base q,
p |-> derivationsR tu include_base cls mdc q
-|- p |-> derivationsR tu' include_base cls mdc q.
Proof.
intros.
rewrite /derivationsR.
eapply derivationsR'_ok_supports; eauto.
Qed.
End derivationsR.
(* conveniences for the common pattern *)
Notation init_derivationR cls path q :=
(derivationR cls%_cpp_name (path%_cpp_name ++ [cls%_cpp_name]) q).
derivationsR' tu q size include_base cls path.
Section derivationsR.
Context `{Σ : cpp_logic, σ : genv}.
Lemma derivationsR'_sub_module tu tu' q f include_base cls path :
sub_module tu tu' ->
derivationsR' tu q f include_base cls path
|-- derivationsR' tu' q f include_base cls path.
Proof.
intros Hsub%types_compat.
move: include_base cls path. induction f; intros; cbn; first done.
case_match eqn:Hcls; last by rewrite {1}ERROR_elim; apply bi.False_elim.
specialize (Hsub _ _ Hcls). destruct Hsub as (gv' & Heq & Hsub); rewrite Heq; clear Heq.
case_match; try by rewrite {1}ERROR_elim; apply bi.False_elim.
destruct gv'; try done. cbn in Hsub. case_bool_decide; [simplify_eq|done].
f_equiv. f_equiv=>_ b. f_equiv. apply IHf.
Qed.
Lemma derivationsR_sub_module tu tu' q include_base cls path :
sub_module tu tu' ->
derivationsR tu q include_base cls path
|-- derivationsR tu' q include_base cls path.
Proof. apply derivationsR'_sub_module. Qed.
(* supports_with_fuel tu cls f states that f is sufficient fuel to cover
the entire class hierarchy of cls within the translation unit tu.
This is the pure part of derivationsR *)
Inductive supports_with_fuel (tu : translation_unit) (cls : globname) : nat -> Prop :=
| supports_S {f st}
(_ : tu.(types) !! cls = Some (Gstruct st))
(_ : List.Forall (fun b => supports_with_fuel tu b.1 f) st.(s_bases))
: supports_with_fuel tu cls (S f).
Lemma supports_big_op (PROP : bi) tu cls st f :
(tu.(types) !! cls = Some (Gstruct st)) ->
([∗list] b ∈ st.(s_bases) , [| supports_with_fuel tu b.1 f |]) |-@{PROP} [| supports_with_fuel tu cls (S f) |].
Proof.
intros.
iPureIntro. intros.
econstructor; eauto.
apply List.Forall_forall. intros.
apply elem_of_list_In in H1.
apply elem_of_list_lookup_1 in H1.
destruct H1.
eapply H0; eauto.
Qed.
Lemma derivationsR'_ok tu tu' (sub : sub_module tu tu') :
forall f f' mdc (p : ptr) cls include_base q,
f <= f' ->
p |-> derivationsR' tu q f include_base cls mdc
|-- p |-> derivationsR' tu' q f' include_base cls mdc ** [| supports_with_fuel tu cls f |].
Proof.
induction f; rewrite /derivationsR' /=; intros; try iIntros "[]".
destruct f'; try lia.
case_match; try by iIntros "[]".
case_match; try by iIntros "[]".
erewrite sub_module_preserves_gstruct; eauto.
subst. rewrite !_at_sep.
rewrite -!bi.sep_assoc.
iIntros "[X Y]". iSplitL "X".
{ case_match; try rewrite _at_emp; eauto. }
rewrite -supports_big_op; eauto.
rewrite !_at_big_sepL.
rewrite -big_sepL_sep.
iRevert "Y".
iApply big_sepL_mono.
intros.
rewrite !_at_offsetR.
rewrite (IHf f'); last lia.
eauto.
Qed.
Lemma derivationsR_ok tu tu' (sub : sub_module tu tu') :
forall mdc (p : ptr) cls include_base q,
p |-> derivationsR tu include_base cls mdc q
|-- p |-> derivationsR tu' include_base cls mdc q ** [| supports_with_fuel tu cls (NM.cardinal (types $ genv_tu σ)) |].
Proof. intros; by apply derivationsR'_ok; eauto. Qed.
Lemma derivationsR'_ok_supports tu tu' (sub : sub_module tu tu') :
forall cls f, supports_with_fuel tu cls f ->
forall f' mdc (p : ptr) include_base q, f <= f' ->
p |-> derivationsR' tu q f include_base cls mdc
-|- p |-> derivationsR' tu' q f' include_base cls mdc.
Proof.
refine (fix rec cls f X {struct X} :=
match X with
| supports_S _ _ _ _ => _
end); simpl; intros.
destruct f'; try lia. simpl.
rewrite e.
erewrite sub_module_preserves_gstruct; eauto.
rewrite !_at_sep !_at_big_sepL. f_equiv.
induction f0; simpl; eauto.
rewrite IHf0 !_at_offsetR. f_equiv.
iApply rec; eauto. lia.
Qed.
Lemma derivationsR_ok_supports tu tu' (sub : sub_module tu tu') :
forall cls, supports_with_fuel tu cls (NM.cardinal (types (genv_tu σ))) ->
forall mdc (p : ptr) include_base q,
p |-> derivationsR tu include_base cls mdc q
-|- p |-> derivationsR tu' include_base cls mdc q.
Proof.
intros.
rewrite /derivationsR.
eapply derivationsR'_ok_supports; eauto.
Qed.
End derivationsR.
(* conveniences for the common pattern *)
Notation init_derivationR cls path q :=
(derivationR cls%_cpp_name (path%_cpp_name ++ [cls%_cpp_name]) q).
wp_init_identity this tu cls Q updates the identities of this by
updating the derivationR of all base classes (transitively) and
producing the new identity for "this".
Definition wp_init_identity `{Σ : cpp_logic, σ : genv} (p : ptr) (tu : translation_unit)
(cls : globname) (Q : mpred) : mpred :=
p |-> derivationsR tu false cls [] (cQp.mut 1) **
(p |-> derivationsR tu true cls [cls] (cQp.mut 1) -* Q).
Section wp_init_identity.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (p : ptr) (Q : mpred).
Lemma wp_init_identity_frame p tu tu' cls Q Q' :
sub_module tu tu' ->
Q' -* Q |-- wp_init_identity p tu cls Q' -* wp_init_identity p tu' cls Q.
Proof.
rewrite /wp_init_identity.
iIntros (sub) "Q [X Y]".
iDestruct (derivationsR_ok with "X") as "[X %]"; eauto.
iFrame.
iIntros "X". iApply "Q".
iApply "Y".
iApply derivationsR_ok_supports; eauto.
Qed.
End wp_init_identity.
(cls : globname) (Q : mpred) : mpred :=
p |-> derivationsR tu false cls [] (cQp.mut 1) **
(p |-> derivationsR tu true cls [cls] (cQp.mut 1) -* Q).
Section wp_init_identity.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (p : ptr) (Q : mpred).
Lemma wp_init_identity_frame p tu tu' cls Q Q' :
sub_module tu tu' ->
Q' -* Q |-- wp_init_identity p tu cls Q' -* wp_init_identity p tu' cls Q.
Proof.
rewrite /wp_init_identity.
iIntros (sub) "Q [X Y]".
iDestruct (derivationsR_ok with "X") as "[X %]"; eauto.
iFrame.
iIntros "X". iApply "Q".
iApply "Y".
iApply derivationsR_ok_supports; eauto.
Qed.
End wp_init_identity.
wp_revert_identity this tu cls Q updates the identities of this by
taking the identity of this class and transitively updating the
identity of all base classes to remove cls as the most derived
class.
Definition wp_revert_identity `{Σ : cpp_logic, σ : genv} (p : ptr) (tu : translation_unit)
(cls : globname) (Q : mpred) : mpred :=
p |-> derivationsR tu true cls [cls] (cQp.mut 1) **
(p |-> derivationsR tu false cls [] (cQp.mut 1) -* Q).
Section with_cpp.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (p : ptr) (Q : mpred).
Lemma wp_revert_identity_frame p tu tu' cls Q Q' :
sub_module tu tu' ->
Q' -* Q |-- wp_revert_identity p tu cls Q' -* wp_revert_identity p tu' cls Q.
Proof.
rewrite /wp_revert_identity.
iIntros (sub) "Q [X Y]".
iDestruct (derivationsR_ok with "X") as "[X %]"; eauto.
iFrame.
iIntros "X". iApply "Q".
iApply "Y".
iApply derivationsR_ok_supports; eauto.
Qed.
(cls : globname) (Q : mpred) : mpred :=
p |-> derivationsR tu true cls [cls] (cQp.mut 1) **
(p |-> derivationsR tu false cls [] (cQp.mut 1) -* Q).
Section with_cpp.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (p : ptr) (Q : mpred).
Lemma wp_revert_identity_frame p tu tu' cls Q Q' :
sub_module tu tu' ->
Q' -* Q |-- wp_revert_identity p tu cls Q' -* wp_revert_identity p tu' cls Q.
Proof.
rewrite /wp_revert_identity.
iIntros (sub) "Q [X Y]".
iDestruct (derivationsR_ok with "X") as "[X %]"; eauto.
iFrame.
iIntros "X". iApply "Q".
iApply "Y".
iApply derivationsR_ok_supports; eauto.
Qed.
sanity chect that initialization and revert are inverses
Lemma wp_init_revert p tu cls Q :
let REQ := p |-> derivationsR tu false cls [] (cQp.mut 1) in
REQ ** Q
|-- wp_init_identity p tu cls (wp_revert_identity p tu cls (REQ ** Q)).
Proof.
rewrite /wp_revert_identity/wp_init_identity.
iIntros "[$ $] $ $".
Qed.
End with_cpp.
let REQ := p |-> derivationsR tu false cls [] (cQp.mut 1) in
REQ ** Q
|-- wp_init_identity p tu cls (wp_revert_identity p tu cls (REQ ** Q)).
Proof.
rewrite /wp_revert_identity/wp_init_identity.
iIntros "[$ $] $ $".
Qed.
End with_cpp.
Definition wp_make_mutables `{Σ : cpp_logic, σ : genv} (tu : translation_unit) :=
fix wp_make_mutables (args : list (ptr * decltype)) (Q : epred) : mpred :=
match args with
| nil => Q
| p :: args => wp_make_mutables args $ wp_make_mutable tu p.1 p.2 Q
end.
#[global] Hint Opaque wp_make_mutables : typeclass_instances.
Section with_cpp.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : epred).
Lemma wp_make_mutables_frame tu tu' args Q Q' :
sub_module tu tu' ->
Q -* Q' |-- wp_make_mutables tu args Q -* wp_make_mutables tu' args Q'.
Proof.
intros ?%types_compat.
move: Q Q'. induction args; intros; first done. cbn. iIntros "HQ".
iApply (IHargs with "[HQ]"). by iApply wp_const_frame.
Qed.
End with_cpp.
Definition Kcleanup `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(args : list (ptr * decltype)) (Q : Kpred) : Kpred :=
Kat_exit (wp_make_mutables tu args) Q.
#[global] Hint Opaque Kcleanup : typeclass_instances.
Section with_cpp.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : Kpred).
Lemma Kcleanup_frame tu tu' args (Q Q' : Kpred) rt :
sub_module tu tu' ->
Q rt -* Q' rt |-- Kcleanup tu args Q rt -* Kcleanup tu' args Q' rt.
Proof.
intros. rewrite /Kcleanup. iIntros "?". iApply Kat_exit_frame; [|done].
iIntros (??) "?". by iApply wp_make_mutables_frame.
Qed.
End with_cpp.
bind_vars tu ar ts args ρ Q initializes a function's arguments
args according to its arity ar and declared parameter types ts.
NOTE. We make arguments const here if necessary and then make them
mutable again in the second argument to Q.
Definition bind_vars `{Σ : cpp_logic, σ : genv} (tu : translation_unit) (ar : function_arity) :=
fix bind_vars (ts : list (ident * decltype)) (args : list ptr)
(ρ : option ptr -> region) (Q : region -> list (ptr * decltype) -> epred) : mpred :=
match ts with
| nil =>
match ar with
| Ar_Definite =>
match args with
| nil => Q (ρ None) []
| _ :: _ => ERROR "bind_vars: extra arguments"
end
| Ar_Variadic =>
match args with
| vap :: nil => Q (ρ $ Some vap) []
| _ => ERROR "bind_vars: variadic function missing varargs"
end
end
| xty :: ts =>
match args with
| p :: args =>
(*
NOTE: We need not gather additional qualifiers from an array's
element type as Clang's parser eagerly "decays" a function's
array parameter types to pointer types.
*)
let recurse := bind_vars ts args (fun vap => Rbind xty.1 p $ ρ vap) in
let qty := decompose_type xty.2 in
let ty := qty.2 in
if q_const qty.1 then
let* := wp_make_const tu p ty in
let* ρ, consts := recurse in
Q ρ $ (p,ty) :: consts
else
recurse Q
| nil => ERROR "bind_vars: insufficient arguments"
end
end.
#[global] Hint Opaque bind_vars : typeclass_instances.
Section with_cpp.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : region -> list (ptr * decltype) -> epred).
Lemma bind_vars_frame tu tu' ar ts args ρ Q Q' :
sub_module tu tu' ->
Forall ρ args', Q ρ args' -* Q' ρ args'
|-- bind_vars tu ar ts args ρ Q -* bind_vars tu' ar ts args ρ Q'.
Proof.
intros Hsub%types_compat. move: args ρ Q Q'. induction ts; intros [] *; cbn.
{ destruct ar; auto. iIntros "HQ ?". by iApply "HQ". }
{ destruct ar; auto. case_match; auto. iIntros "HQ ?". by iApply "HQ". }
{ auto. }
{ iIntros "HQ". case_match.
- iApply wp_const_frame; [done|]. iApply IHts. iIntros (??) "?". by iApply "HQ".
- iApply IHts. iIntros (??) "?". by iApply "HQ". }
Qed.
End with_cpp.
fix bind_vars (ts : list (ident * decltype)) (args : list ptr)
(ρ : option ptr -> region) (Q : region -> list (ptr * decltype) -> epred) : mpred :=
match ts with
| nil =>
match ar with
| Ar_Definite =>
match args with
| nil => Q (ρ None) []
| _ :: _ => ERROR "bind_vars: extra arguments"
end
| Ar_Variadic =>
match args with
| vap :: nil => Q (ρ $ Some vap) []
| _ => ERROR "bind_vars: variadic function missing varargs"
end
end
| xty :: ts =>
match args with
| p :: args =>
(*
NOTE: We need not gather additional qualifiers from an array's
element type as Clang's parser eagerly "decays" a function's
array parameter types to pointer types.
*)
let recurse := bind_vars ts args (fun vap => Rbind xty.1 p $ ρ vap) in
let qty := decompose_type xty.2 in
let ty := qty.2 in
if q_const qty.1 then
let* := wp_make_const tu p ty in
let* ρ, consts := recurse in
Q ρ $ (p,ty) :: consts
else
recurse Q
| nil => ERROR "bind_vars: insufficient arguments"
end
end.
#[global] Hint Opaque bind_vars : typeclass_instances.
Section with_cpp.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : region -> list (ptr * decltype) -> epred).
Lemma bind_vars_frame tu tu' ar ts args ρ Q Q' :
sub_module tu tu' ->
Forall ρ args', Q ρ args' -* Q' ρ args'
|-- bind_vars tu ar ts args ρ Q -* bind_vars tu' ar ts args ρ Q'.
Proof.
intros Hsub%types_compat. move: args ρ Q Q'. induction ts; intros [] *; cbn.
{ destruct ar; auto. iIntros "HQ ?". by iApply "HQ". }
{ destruct ar; auto. case_match; auto. iIntros "HQ ?". by iApply "HQ". }
{ auto. }
{ iIntros "HQ". case_match.
- iApply wp_const_frame; [done|]. iApply IHts. iIntros (??) "?". by iApply "HQ".
- iApply IHts. iIntros (??) "?". by iApply "HQ". }
Qed.
End with_cpp.
The weakest precondition of a function
#[local] Definition wp_func' `{Σ : cpp_logic, σ : genv} (u : bool) (tu : translation_unit)
(f : Func) (args : list ptr) (Q : ptr -> epred) : mpred :=
match f.(f_body) with
| None => ERROR "wp_func: no body"
| Some body =>
match body with
| Impl body =>
let ρ vap := Remp None vap f.(f_return) in
letI* ρ, cleanup := bind_vars tu f.(f_arity) f.(f_params) args ρ in
|> wp tu ρ body (Kcleanup tu cleanup $ Kreturn $ fun x => |={top}=>?u |> Q x)
| Builtin builtin =>
let ts := List.map snd f.(f_params) in
wp_builtin_func builtin (Tfunction $ @FunctionType _ f.(f_cc) f.(f_arity) f.(f_return) ts) args Q
end
end.
mlock Definition wp_func `{Σ : cpp_logic, σ : genv} :=
Cbn (Reduce (wp_func' true)).
#[global] Arguments wp_func {_ _ _ _} _ _ _ _%_I : assert. (* mlock bug *)
Definition func_ok `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(f : Func) (spec : function_spec) : mpred :=
[| type_of_spec spec = type_of_value (Ofunction f) |] **
□ Forall (Q : ptr -> epred) vals,
spec.(fs_spec) vals Q -* wp_func tu f vals Q.
Section wp_func.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : ptr -> epred).
Lemma wp_func_frame tu tu' f args Q Q' :
sub_module tu tu' ->
Forall p, Q p -* Q' p
|-- wp_func tu f args Q -* wp_func tu' f args Q'.
Proof.
intros. rewrite wp_func.unlock. iIntros "HQ".
case_match; last by auto.
case_match; last by iApply wp_builtin_func_frame.
iApply bind_vars_frame; [done|]. iIntros (??) "wp !>"; iRevert "wp".
iApply wp_frame; [done|]. iIntros (?).
iApply Kcleanup_frame; [done|].
iApply Kreturn_frame. iIntros (?) "Q".
iApply ("HQ" with "Q").
Qed.
(f : Func) (args : list ptr) (Q : ptr -> epred) : mpred :=
match f.(f_body) with
| None => ERROR "wp_func: no body"
| Some body =>
match body with
| Impl body =>
let ρ vap := Remp None vap f.(f_return) in
letI* ρ, cleanup := bind_vars tu f.(f_arity) f.(f_params) args ρ in
|> wp tu ρ body (Kcleanup tu cleanup $ Kreturn $ fun x => |={top}=>?u |> Q x)
| Builtin builtin =>
let ts := List.map snd f.(f_params) in
wp_builtin_func builtin (Tfunction $ @FunctionType _ f.(f_cc) f.(f_arity) f.(f_return) ts) args Q
end
end.
mlock Definition wp_func `{Σ : cpp_logic, σ : genv} :=
Cbn (Reduce (wp_func' true)).
#[global] Arguments wp_func {_ _ _ _} _ _ _ _%_I : assert. (* mlock bug *)
Definition func_ok `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(f : Func) (spec : function_spec) : mpred :=
[| type_of_spec spec = type_of_value (Ofunction f) |] **
□ Forall (Q : ptr -> epred) vals,
spec.(fs_spec) vals Q -* wp_func tu f vals Q.
Section wp_func.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : ptr -> epred).
Lemma wp_func_frame tu tu' f args Q Q' :
sub_module tu tu' ->
Forall p, Q p -* Q' p
|-- wp_func tu f args Q -* wp_func tu' f args Q'.
Proof.
intros. rewrite wp_func.unlock. iIntros "HQ".
case_match; last by auto.
case_match; last by iApply wp_builtin_func_frame.
iApply bind_vars_frame; [done|]. iIntros (??) "wp !>"; iRevert "wp".
iApply wp_frame; [done|]. iIntros (?).
iApply Kcleanup_frame; [done|].
iApply Kreturn_frame. iIntros (?) "Q".
iApply ("HQ" with "Q").
Qed.
Unsupported
Lemma wp_func_shift tu f args Q :
(|={top}=> wp_func tu f args (fun p => |={top}=> Q p))
|-- wp_func tu f args Q.
Abort.
Lemma wp_func_intro tu f args Q :
Cbn (Reduce (wp_func' false tu f args Q)) |-- wp_func tu f args Q.
Proof.
rewrite wp_func.unlock. repeat case_match; auto.
iApply bind_vars_frame; [done|]. iIntros (??) "wp !>"; iRevert "wp".
iApply wp_frame; [done|]. iIntros (?).
iApply Kcleanup_frame; [done|].
iApply Kreturn_frame. auto.
Qed.
Lemma wp_func_elim tu f args Q :
wp_func tu f args Q |-- Cbn (Reduce (wp_func' true tu f args Q)).
Proof. by rewrite wp_func.unlock. Qed.
End wp_func.
(|={top}=> wp_func tu f args (fun p => |={top}=> Q p))
|-- wp_func tu f args Q.
Abort.
Lemma wp_func_intro tu f args Q :
Cbn (Reduce (wp_func' false tu f args Q)) |-- wp_func tu f args Q.
Proof.
rewrite wp_func.unlock. repeat case_match; auto.
iApply bind_vars_frame; [done|]. iIntros (??) "wp !>"; iRevert "wp".
iApply wp_frame; [done|]. iIntros (?).
iApply Kcleanup_frame; [done|].
iApply Kreturn_frame. auto.
Qed.
Lemma wp_func_elim tu f args Q :
wp_func tu f args Q |-- Cbn (Reduce (wp_func' true tu f args Q)).
Proof. by rewrite wp_func.unlock. Qed.
End wp_func.
The weakest precondition of a method
#[local] Definition wp_method' `{Σ : cpp_logic, σ : genv} (u : bool) (tu : translation_unit)
(m : Method) (args : list ptr) (Q : ptr -> epred) : mpred :=
match m.(m_body) with
| None => ERROR "wp_method: no body"
| Some (UserDefined body) =>
match args with
| thisp :: rest_vals =>
let ρ va := Remp (Some thisp) va m.(m_return) in
letI* ρ, cleanup := bind_vars tu m.(m_arity) m.(m_params) rest_vals ρ in
|> wp tu ρ body (Kcleanup tu cleanup $ Kreturn $ fun x => |={top}=>?u |> Q x)
| _ => ERROR "wp_method: no arguments"
end
| Some _ => UNSUPPORTED "wp_method: defaulted methods"
end.
mlock Definition wp_method `{Σ : cpp_logic, σ : genv} :=
Cbn (Reduce (wp_method' true)).
#[global] Arguments wp_method {_ _ _ _} _ _ _ _%_I : assert. (* mlock bug *)
Definition method_ok `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(m : Method) (spec : function_spec) : mpred :=
[| type_of_spec spec = type_of_value (Omethod m) |] **
□ Forall (Q : ptr -> mpred) vals,
spec.(fs_spec) vals Q -* wp_method tu m vals Q.
Section wp_method.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : ptr -> epred).
Lemma wp_method_frame tu tu' m args Q Q' :
sub_module tu tu' ->
Forall p, Q p -* Q' p
|-- wp_method tu m args Q -* wp_method tu' m args Q'.
Proof.
intros. iIntros "HQ". rewrite wp_method.unlock.
repeat case_match; auto.
iApply bind_vars_frame; [done|]. iIntros (??) "wp !>"; iRevert "wp".
iApply wp_frame; [done|]. iIntros (?).
iApply Kcleanup_frame; [done|].
iApply Kreturn_frame. iIntros (?) "Q".
iApply ("HQ" with "Q").
Qed.
(m : Method) (args : list ptr) (Q : ptr -> epred) : mpred :=
match m.(m_body) with
| None => ERROR "wp_method: no body"
| Some (UserDefined body) =>
match args with
| thisp :: rest_vals =>
let ρ va := Remp (Some thisp) va m.(m_return) in
letI* ρ, cleanup := bind_vars tu m.(m_arity) m.(m_params) rest_vals ρ in
|> wp tu ρ body (Kcleanup tu cleanup $ Kreturn $ fun x => |={top}=>?u |> Q x)
| _ => ERROR "wp_method: no arguments"
end
| Some _ => UNSUPPORTED "wp_method: defaulted methods"
end.
mlock Definition wp_method `{Σ : cpp_logic, σ : genv} :=
Cbn (Reduce (wp_method' true)).
#[global] Arguments wp_method {_ _ _ _} _ _ _ _%_I : assert. (* mlock bug *)
Definition method_ok `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(m : Method) (spec : function_spec) : mpred :=
[| type_of_spec spec = type_of_value (Omethod m) |] **
□ Forall (Q : ptr -> mpred) vals,
spec.(fs_spec) vals Q -* wp_method tu m vals Q.
Section wp_method.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : ptr -> epred).
Lemma wp_method_frame tu tu' m args Q Q' :
sub_module tu tu' ->
Forall p, Q p -* Q' p
|-- wp_method tu m args Q -* wp_method tu' m args Q'.
Proof.
intros. iIntros "HQ". rewrite wp_method.unlock.
repeat case_match; auto.
iApply bind_vars_frame; [done|]. iIntros (??) "wp !>"; iRevert "wp".
iApply wp_frame; [done|]. iIntros (?).
iApply Kcleanup_frame; [done|].
iApply Kreturn_frame. iIntros (?) "Q".
iApply ("HQ" with "Q").
Qed.
Unsupported
Lemma wp_method_shift tu m args Q :
(|={top}=> wp_method tu m args (fun p => |={top}=> Q p))
|-- wp_method tu m args Q.
Abort.
Lemma wp_method_intro tu m args Q :
Cbn (Reduce (wp_method' false tu m args Q)) |-- wp_method tu m args Q.
Proof.
rewrite wp_method.unlock. do 3!f_equiv.
iApply bind_vars_frame; [done|]. iIntros (??) "wp !>"; iRevert "wp".
iApply wp_frame; [done|]. iIntros (?).
iApply Kcleanup_frame; [done|].
iApply Kreturn_frame. auto.
Qed.
Lemma wp_method_elim tu m args Q :
wp_method tu m args Q |-- Cbn (Reduce (wp_method' true tu m args Q)).
Proof. by rewrite wp_method.unlock. Qed.
End wp_method.
(|={top}=> wp_method tu m args (fun p => |={top}=> Q p))
|-- wp_method tu m args Q.
Abort.
Lemma wp_method_intro tu m args Q :
Cbn (Reduce (wp_method' false tu m args Q)) |-- wp_method tu m args Q.
Proof.
rewrite wp_method.unlock. do 3!f_equiv.
iApply bind_vars_frame; [done|]. iIntros (??) "wp !>"; iRevert "wp".
iApply wp_frame; [done|]. iIntros (?).
iApply Kcleanup_frame; [done|].
iApply Kreturn_frame. auto.
Qed.
Lemma wp_method_elim tu m args Q :
wp_method tu m args Q |-- Cbn (Reduce (wp_method' true tu m args Q)).
Proof. by rewrite wp_method.unlock. Qed.
End wp_method.
Definition wpi_members `{Σ : cpp_logic, σ : genv} (tu : translation_unit) (ρ : region)
(cls : globname) (this : ptr) (inits : list Initializer) :=
fix wpi_members (members : list Member) (Q : epred) : mpred :=
match members with
| nil => Q
| m :: members =>
let initializer_for (i : Initializer) :=
match i.(init_path) with
| InitField x
| InitIndirect ((x,_) :: _) _ => bool_decide (m.(mem_name) = x)
| _ => false
end
in
match List.filter initializer_for inits with
| nil =>
(*
there is no initializer for this member, so we "default
initialize" it (see https://eel.is/c++draft/dcl.initgeneral-7 ) *)
let* frees :=
default_initialize tu m.(mem_type)
(this ,, _field (Field cls m.(mem_name)))
in
let* := interp tu frees in
wpi_members members Q
| i :: is' =>
match i.(init_path) with
| InitField _ (* = m.(mem_name) *) =>
match is' with
| nil =>
(* there is a *unique* initializer for this field *)
wpi tu ρ cls this m.(mem_type) i (wpi_members members Q)
| _ =>
(* there are multiple initializers for this field *)
ERROR ("multiple initializers for field", (cls, m))
end
| InitIndirect _ _ =>
(*
this is initializing an object via sub-objets using indirect
initialization.
TODO currently not supported
*)
UNSUPPORTED ("indirect initialization", (cls, m))
| _ => False%I (* unreachable due to the filter *)
end
end
end.
Section with_cpp.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (p : ptr) (Q : epred).
Lemma wpi_members_frame tu tu' ρ cls this inits flds Q Q' :
sub_module tu tu' ->
Q -* Q'
|-- wpi_members tu ρ cls this inits flds Q -* wpi_members tu' ρ cls this inits flds Q'.
Proof.
intros. move: Q Q'. induction flds; intros; first done. cbn.
case_match.
{ iIntros "a"; iApply default_initialize_frame; [done|].
iIntros (?); iApply interp_frame_strong; [done|]. by iApply IHflds. }
{ case_match; eauto.
case_match; eauto.
iIntros "a".
iApply wpi_frame; [done|].
by iApply IHflds. }
Qed.
End with_cpp.
(cls : globname) (this : ptr) (inits : list Initializer) :=
fix wpi_members (members : list Member) (Q : epred) : mpred :=
match members with
| nil => Q
| m :: members =>
let initializer_for (i : Initializer) :=
match i.(init_path) with
| InitField x
| InitIndirect ((x,_) :: _) _ => bool_decide (m.(mem_name) = x)
| _ => false
end
in
match List.filter initializer_for inits with
| nil =>
(*
there is no initializer for this member, so we "default
initialize" it (see https://eel.is/c++draft/dcl.initgeneral-7 ) *)
let* frees :=
default_initialize tu m.(mem_type)
(this ,, _field (Field cls m.(mem_name)))
in
let* := interp tu frees in
wpi_members members Q
| i :: is' =>
match i.(init_path) with
| InitField _ (* = m.(mem_name) *) =>
match is' with
| nil =>
(* there is a *unique* initializer for this field *)
wpi tu ρ cls this m.(mem_type) i (wpi_members members Q)
| _ =>
(* there are multiple initializers for this field *)
ERROR ("multiple initializers for field", (cls, m))
end
| InitIndirect _ _ =>
(*
this is initializing an object via sub-objets using indirect
initialization.
TODO currently not supported
*)
UNSUPPORTED ("indirect initialization", (cls, m))
| _ => False%I (* unreachable due to the filter *)
end
end
end.
Section with_cpp.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (p : ptr) (Q : epred).
Lemma wpi_members_frame tu tu' ρ cls this inits flds Q Q' :
sub_module tu tu' ->
Q -* Q'
|-- wpi_members tu ρ cls this inits flds Q -* wpi_members tu' ρ cls this inits flds Q'.
Proof.
intros. move: Q Q'. induction flds; intros; first done. cbn.
case_match.
{ iIntros "a"; iApply default_initialize_frame; [done|].
iIntros (?); iApply interp_frame_strong; [done|]. by iApply IHflds. }
{ case_match; eauto.
case_match; eauto.
iIntros "a".
iApply wpi_frame; [done|].
by iApply IHflds. }
Qed.
End with_cpp.
Initialization of bases in the initializer list
Definition wpi_bases `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(ρ : region) (cls : globname) (this : ptr) (inits : list Initializer) :=
fix wpi_bases (bases : list globname) (Q : epred) : mpred :=
match bases with
| nil => Q
| b :: bases =>
match List.filter (fun i => bool_decide (i.(init_path) = InitBase (lang:=lang.cpp) b)) inits with
| nil =>
(*
There is no initializer for this base class.
*)
ERROR ("wpi_bases: missing base class initializer: ", cls)
| i :: nil =>
(* there is an initializer for this class *)
wpi tu ρ cls this (Tnamed b) i (wpi_bases bases Q)
| _ :: _ :: _ =>
(* there are multiple initializers for this, so we fail *)
ERROR ("wpi_bases: multiple initializers for base: ", cls, b)
end
end.
Section with_cpp.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (p : ptr) (Q : epred).
Lemma wpi_bases_frame tu tu' ρ cls p inits bases Q Q' :
sub_module tu tu' ->
Q -* Q'
|-- wpi_bases tu ρ cls p inits bases Q -* wpi_bases tu' ρ cls p inits bases Q'.
Proof.
intros. move: Q Q'. induction bases; intros; first done.
rewrite/wpi_bases-/(wpi_bases _ _ _ _ _).
do 2!(case_match; auto). iIntros "?".
iApply wpi_frame; [done|].
by iApply IHbases.
Qed.
End with_cpp.
Definition wp_struct_initializer_list `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(s : Struct) (ρ : region) (cls : globname) (this : ptr)
(inits : list Initializer) (Q : epred) : mpred :=
match List.find (fun i => bool_decide (i.(init_path) = InitThis)) inits with
| Some {| init_init := e |} =>
match inits with
| _ :: nil =>
(* this is a delegating constructor, simply delegate. *)
wp_init tu ρ (Tnamed cls) this e (fun frees => interp tu frees Q)
| _ =>
(*
delegating constructors are not allowed to have any other
initializers
*)
ERROR "wp_struct_initializer_list: delegating constructor has other initializers"
end
| None =>
let bases := wpi_bases tu ρ cls this inits (List.map fst s.(s_bases)) in
let members := wpi_members tu ρ cls this inits s.(s_fields) in
let ident Q := wp_init_identity this tu cls Q in
(ρ : region) (cls : globname) (this : ptr) (inits : list Initializer) :=
fix wpi_bases (bases : list globname) (Q : epred) : mpred :=
match bases with
| nil => Q
| b :: bases =>
match List.filter (fun i => bool_decide (i.(init_path) = InitBase (lang:=lang.cpp) b)) inits with
| nil =>
(*
There is no initializer for this base class.
*)
ERROR ("wpi_bases: missing base class initializer: ", cls)
| i :: nil =>
(* there is an initializer for this class *)
wpi tu ρ cls this (Tnamed b) i (wpi_bases bases Q)
| _ :: _ :: _ =>
(* there are multiple initializers for this, so we fail *)
ERROR ("wpi_bases: multiple initializers for base: ", cls, b)
end
end.
Section with_cpp.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (p : ptr) (Q : epred).
Lemma wpi_bases_frame tu tu' ρ cls p inits bases Q Q' :
sub_module tu tu' ->
Q -* Q'
|-- wpi_bases tu ρ cls p inits bases Q -* wpi_bases tu' ρ cls p inits bases Q'.
Proof.
intros. move: Q Q'. induction bases; intros; first done.
rewrite/wpi_bases-/(wpi_bases _ _ _ _ _).
do 2!(case_match; auto). iIntros "?".
iApply wpi_frame; [done|].
by iApply IHbases.
Qed.
End with_cpp.
Definition wp_struct_initializer_list `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(s : Struct) (ρ : region) (cls : globname) (this : ptr)
(inits : list Initializer) (Q : epred) : mpred :=
match List.find (fun i => bool_decide (i.(init_path) = InitThis)) inits with
| Some {| init_init := e |} =>
match inits with
| _ :: nil =>
(* this is a delegating constructor, simply delegate. *)
wp_init tu ρ (Tnamed cls) this e (fun frees => interp tu frees Q)
| _ =>
(*
delegating constructors are not allowed to have any other
initializers
*)
ERROR "wp_struct_initializer_list: delegating constructor has other initializers"
end
| None =>
let bases := wpi_bases tu ρ cls this inits (List.map fst s.(s_bases)) in
let members := wpi_members tu ρ cls this inits s.(s_fields) in
let ident Q := wp_init_identity this tu cls Q in
Provide strict validity for this and immediate members,
initialize the bases, then the identity, then initialize the
members, following http://eel.is/c++draft/class.base.init13
(except virtual base classes, which are unsupported)
NOTE we get the [structR] at the end since [structR (cQp.mut 1)
cls |-- type_ptrR (Tnamed cls)].
this |-> svalid_members cls ((fun m => (m.(mem_name), m.(mem_type))) <$> s.(s_fields)) -*
bases (ident (members (this |-> structR cls (cQp.mut 1) -* Q)))
end.
Section with_cpp.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (p : ptr) (Q : epred).
Lemma wp_struct_initializer_list_frame tu s ρ cls p inits Q Q' :
bases (ident (members (this |-> structR cls (cQp.mut 1) -* Q)))
end.
Section with_cpp.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (p : ptr) (Q : epred).
Lemma wp_struct_initializer_list_frame tu s ρ cls p inits Q Q' :
Q -* Q'
|-- wp_struct_initializer_list tu s ρ cls p inits Q -* wp_struct_initializer_list tu s ρ cls p inits Q'.
Proof.
rewrite /wp_struct_initializer_list. case_match.
{ repeat (case_match; auto). iIntros "?".
iApply wp_init_frame; [done|]. iIntros (?).
by iApply interp_frame_strong. }
{ iIntros "?".
iApply wand_frame.
iApply wpi_bases_frame; [done|].
iApply wp_init_identity_frame => //.
iApply wpi_members_frame; [done|].
by iApply wand_frame. }
Qed.
End with_cpp.
Definition wp_union_initializer_list `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(u : decl.Union) (ρ : region) (cls : globname) (this : ptr)
(inits : list Initializer) (Q : epred) : mpred :=
match inits with
| [] => Q
| [{| init_path := InitField f ; init_init := e |} as init] =>
match list_find (fun m => f = m.(mem_name)) u.(u_fields) with
| None => ERROR "wp_union_initializer_list: field not found"
| Some (n, m) => wpi tu ρ cls this m.(mem_type) init $ this |-> unionR cls (cQp.m 1) (Some n) -* Q
end
| _ =>
UNSUPPORTED "wp_union_initializer_list: indirect (or self) union initialization is not currently supported"
end.
Section with_cpp.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (p : ptr) (Q : epred).
Lemma wp_union_initializer_list_frame tu tu' u ρ cls p inits Q Q' :
sub_module tu tu' ->
Q -* Q'
|-- wp_union_initializer_list tu u ρ cls p inits Q -* wp_union_initializer_list tu' u ρ cls p inits Q'.
Proof.
intros. rewrite/wp_union_initializer_list.
repeat case_match; auto. iIntros "?".
iApply wpi_frame; [done|].
by iApply wand_frame.
Qed.
End with_cpp.
|-- wp_struct_initializer_list tu s ρ cls p inits Q -* wp_struct_initializer_list tu s ρ cls p inits Q'.
Proof.
rewrite /wp_struct_initializer_list. case_match.
{ repeat (case_match; auto). iIntros "?".
iApply wp_init_frame; [done|]. iIntros (?).
by iApply interp_frame_strong. }
{ iIntros "?".
iApply wand_frame.
iApply wpi_bases_frame; [done|].
iApply wp_init_identity_frame => //.
iApply wpi_members_frame; [done|].
by iApply wand_frame. }
Qed.
End with_cpp.
Definition wp_union_initializer_list `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(u : decl.Union) (ρ : region) (cls : globname) (this : ptr)
(inits : list Initializer) (Q : epred) : mpred :=
match inits with
| [] => Q
| [{| init_path := InitField f ; init_init := e |} as init] =>
match list_find (fun m => f = m.(mem_name)) u.(u_fields) with
| None => ERROR "wp_union_initializer_list: field not found"
| Some (n, m) => wpi tu ρ cls this m.(mem_type) init $ this |-> unionR cls (cQp.m 1) (Some n) -* Q
end
| _ =>
UNSUPPORTED "wp_union_initializer_list: indirect (or self) union initialization is not currently supported"
end.
Section with_cpp.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (p : ptr) (Q : epred).
Lemma wp_union_initializer_list_frame tu tu' u ρ cls p inits Q Q' :
sub_module tu tu' ->
Q -* Q'
|-- wp_union_initializer_list tu u ρ cls p inits Q -* wp_union_initializer_list tu' u ρ cls p inits Q'.
Proof.
intros. rewrite/wp_union_initializer_list.
repeat case_match; auto. iIntros "?".
iApply wpi_frame; [done|].
by iApply wand_frame.
Qed.
End with_cpp.
A special version of return to match the C++ rule that constructors
and destructors must not syntactically return a value, e.g. `return
f()` for `void f()` are not allowed.
NOTE: we could drop this in favor of relying on the compiler to check
this.
Definition Kreturn_void_inner `{Σ : cpp_logic} (P : epred) (rt : ReturnType) : mpred :=
match rt with
| Normal | ReturnVoid => P
| Break | Continue | ReturnVal _ => False
end.
#[global] Arguments Kreturn_void_inner _ _ _ _ !rt /.
Definition Kreturn_void `{Σ : cpp_logic} (P : epred) : Kpred :=
KP $ Kreturn_void_inner P.
#[global] Hint Opaque Kreturn_void : typeclass_instances.
Section Kreturn_void.
Context `{Σ : cpp_logic}.
Implicit Types (Q : epred) (rt : ReturnType).
Lemma Kreturn_void_frame Q Q' rt :
Q -* Q' |-- Kreturn_void Q rt -* Kreturn_void Q' rt.
Proof. destruct rt; auto. Qed.
Lemma Kreturn_void_fupd Q :
Kreturn_void (|={top}=> Q) |-- |={top}=> Kreturn_void Q.
Proof.
constructor=>rt /=. rewrite monPred_at_fupd /Kreturn_void_inner.
by case_match; auto using bi.False_elim.
Qed.
End Kreturn_void.
match rt with
| Normal | ReturnVoid => P
| Break | Continue | ReturnVal _ => False
end.
#[global] Arguments Kreturn_void_inner _ _ _ _ !rt /.
Definition Kreturn_void `{Σ : cpp_logic} (P : epred) : Kpred :=
KP $ Kreturn_void_inner P.
#[global] Hint Opaque Kreturn_void : typeclass_instances.
Section Kreturn_void.
Context `{Σ : cpp_logic}.
Implicit Types (Q : epred) (rt : ReturnType).
Lemma Kreturn_void_frame Q Q' rt :
Q -* Q' |-- Kreturn_void Q rt -* Kreturn_void Q' rt.
Proof. destruct rt; auto. Qed.
Lemma Kreturn_void_fupd Q :
Kreturn_void (|={top}=> Q) |-- |={top}=> Kreturn_void Q.
Proof.
constructor=>rt /=. rewrite monPred_at_fupd /Kreturn_void_inner.
by case_match; auto using bi.False_elim.
Qed.
End Kreturn_void.
wp_ctor tu ctor args Q is the weakest pre-condition (with
post-condition Q) running the constructor ctor with arguments
args.
Note that the constructor semantics consumes the entire blockR of
the object that is being constructed and the C++ abstract machine
breaks this block down producing usable† memory.
**Alternative**: Because constructor calls are *always* syntactically
distinguished (since C++ does not allow taking a pointer to a
constructor), we know that any invocation of a constructor will be
from a wp_init which means that the C++ abstract machine will
already own the memory (see the documentation for wp_init in
wp.v). In order to enforce this semantically within the abstract
machine, we would need a new predicate to say "a constructor with the
given specification" (rather than simply desugaring this to "a
function with the given specification").
NOTE: supporting virtual inheritence will require us to add
constructor kinds here
† It is not necessarily initialized, e.g. because primitive fields are
not initialized (you get an uninitR), but you will get something
that implies type_ptr.
#[local] Definition wp_ctor' `{Σ : cpp_logic, σ : genv} (u : bool) (tu : translation_unit)
(ctor : Ctor) (args : list ptr) (Q : ptr -> epred) : mpred :=
match ctor.(c_body) with
| None => ERROR "wp_ctor: no body"
| Some Defaulted => UNSUPPORTED "wp_ctor: defaulted constructors"
| Some (UserDefined ib) =>
let inits := ib.1 in
let body := ib.2 in
match args with
| thisp :: rest_vals =>
let ty := Tnamed ctor.(c_class) in
match tu.(types) !! ctor.(c_class) with
| Some (Gstruct cls) =>
(*
this is a structure.
We require that you give up the *entire* block of memory
tblockR that the object will use.
*)
thisp |-> tblockR ty (cQp.mut 1) **
|>
let ρ vap := Remp (Some thisp) vap Tvoid in
letI* ρ, cleanup := bind_vars tu ctor.(c_arity) ctor.(c_params) rest_vals ρ in
letI* := wp_struct_initializer_list tu cls ρ ctor.(c_class) thisp inits in
letI* := wp tu ρ body in
letI* := Kcleanup tu cleanup in
letI* := Kreturn_void in
|={top}=>?u |> Forall p : ptr, p |-> primR Tvoid (cQp.mut 1) Vvoid -* Q p
| Some (Gunion union) =>
(*
this is a union.
We require that you give up the *entire* block of memory
tblockR that the object will use.
*)
thisp |-> tblockR ty (cQp.mut 1) **
|>
let ρ vap := Remp (Some thisp) vap Tvoid in
letI* ρ, cleanup := bind_vars tu ctor.(c_arity) ctor.(c_params) rest_vals ρ in
letI* := wp_union_initializer_list tu union ρ ctor.(c_class) thisp inits in
letI* := wp tu ρ body in
letI* := Kcleanup tu cleanup in
letI* := Kreturn_void in
|={top}=>?u |> Forall p : ptr, p |-> primR Tvoid (cQp.mut 1) Vvoid -* Q p
| _ => ERROR ("wp_ctor: constructor for non-aggregate", ctor.(c_class))
end
| _ => ERROR "wp_ctor: constructor without leading [this] argument"
end
end.
mlock Definition wp_ctor `{Σ : cpp_logic, σ : genv} :=
Cbn (Reduce (wp_ctor' true)).
#[global] Arguments wp_ctor {_ _ _ _} _ _ _ _%_I : assert. (* mlock bug *)
Definition ctor_ok `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(ctor : Ctor) (spec : function_spec) : mpred :=
[| type_of_spec spec = type_of_value (Oconstructor ctor) |] **
□ Forall (Q : ptr -> epred) vals,
spec.(fs_spec) vals Q -* wp_ctor tu ctor vals Q.
Section wp_ctor.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : ptr -> epred).
#[local] Ltac initializer_list_frame :=
lazymatch goal with
| |- context [wp_struct_initializer_list] => iApply wp_struct_initializer_list_frame
| |- context [wp_union_initializer_list] => iApply wp_union_initializer_list_frame; [done|]
end.
Lemma wp_ctor_frame tu c args Q Q' :
(ctor : Ctor) (args : list ptr) (Q : ptr -> epred) : mpred :=
match ctor.(c_body) with
| None => ERROR "wp_ctor: no body"
| Some Defaulted => UNSUPPORTED "wp_ctor: defaulted constructors"
| Some (UserDefined ib) =>
let inits := ib.1 in
let body := ib.2 in
match args with
| thisp :: rest_vals =>
let ty := Tnamed ctor.(c_class) in
match tu.(types) !! ctor.(c_class) with
| Some (Gstruct cls) =>
(*
this is a structure.
We require that you give up the *entire* block of memory
tblockR that the object will use.
*)
thisp |-> tblockR ty (cQp.mut 1) **
|>
let ρ vap := Remp (Some thisp) vap Tvoid in
letI* ρ, cleanup := bind_vars tu ctor.(c_arity) ctor.(c_params) rest_vals ρ in
letI* := wp_struct_initializer_list tu cls ρ ctor.(c_class) thisp inits in
letI* := wp tu ρ body in
letI* := Kcleanup tu cleanup in
letI* := Kreturn_void in
|={top}=>?u |> Forall p : ptr, p |-> primR Tvoid (cQp.mut 1) Vvoid -* Q p
| Some (Gunion union) =>
(*
this is a union.
We require that you give up the *entire* block of memory
tblockR that the object will use.
*)
thisp |-> tblockR ty (cQp.mut 1) **
|>
let ρ vap := Remp (Some thisp) vap Tvoid in
letI* ρ, cleanup := bind_vars tu ctor.(c_arity) ctor.(c_params) rest_vals ρ in
letI* := wp_union_initializer_list tu union ρ ctor.(c_class) thisp inits in
letI* := wp tu ρ body in
letI* := Kcleanup tu cleanup in
letI* := Kreturn_void in
|={top}=>?u |> Forall p : ptr, p |-> primR Tvoid (cQp.mut 1) Vvoid -* Q p
| _ => ERROR ("wp_ctor: constructor for non-aggregate", ctor.(c_class))
end
| _ => ERROR "wp_ctor: constructor without leading [this] argument"
end
end.
mlock Definition wp_ctor `{Σ : cpp_logic, σ : genv} :=
Cbn (Reduce (wp_ctor' true)).
#[global] Arguments wp_ctor {_ _ _ _} _ _ _ _%_I : assert. (* mlock bug *)
Definition ctor_ok `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(ctor : Ctor) (spec : function_spec) : mpred :=
[| type_of_spec spec = type_of_value (Oconstructor ctor) |] **
□ Forall (Q : ptr -> epred) vals,
spec.(fs_spec) vals Q -* wp_ctor tu ctor vals Q.
Section wp_ctor.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : ptr -> epred).
#[local] Ltac initializer_list_frame :=
lazymatch goal with
| |- context [wp_struct_initializer_list] => iApply wp_struct_initializer_list_frame
| |- context [wp_union_initializer_list] => iApply wp_union_initializer_list_frame; [done|]
end.
Lemma wp_ctor_frame tu c args Q Q' :
Forall p, Q p -* Q' p
|-- wp_ctor tu c args Q -* wp_ctor tu c args Q'.
Proof.
iIntros "HQ". rewrite wp_ctor.unlock. repeat case_match; auto.
all: iIntros "($ & wp) !>"; iRevert "wp".
all: iApply bind_vars_frame; [done|]; iIntros (??).
all: initializer_list_frame.
all: iApply wp_frame; [done|]; iIntros (?).
all: iApply Kcleanup_frame; [done|].
all: iApply Kreturn_void_frame; iIntros ">HR !> !> % ?".
all: iApply "HQ".
all: by iApply "HR".
Qed.
|-- wp_ctor tu c args Q -* wp_ctor tu c args Q'.
Proof.
iIntros "HQ". rewrite wp_ctor.unlock. repeat case_match; auto.
all: iIntros "($ & wp) !>"; iRevert "wp".
all: iApply bind_vars_frame; [done|]; iIntros (??).
all: initializer_list_frame.
all: iApply wp_frame; [done|]; iIntros (?).
all: iApply Kcleanup_frame; [done|].
all: iApply Kreturn_void_frame; iIntros ">HR !> !> % ?".
all: iApply "HQ".
all: by iApply "HR".
Qed.
Unsupported
Lemma wp_ctor_shift tu c args Q :
(|={top}=> wp_ctor tu c args (fun p => |={top}=> Q p))
|-- wp_ctor tu c args Q.
Abort.
Lemma wp_ctor_intro tu c args Q :
Cbn (Reduce (wp_ctor' false tu c args Q)) |-- wp_ctor tu c args Q.
Proof.
rewrite wp_ctor.unlock. repeat case_match; auto.
all: iIntros "($ & wp) !>"; iRevert "wp".
all: iApply bind_vars_frame; [done|]; iIntros (??).
all: initializer_list_frame.
all: iApply wp_frame; [done|]; iIntros (?).
all: iApply Kcleanup_frame; [done|].
all: iApply Kreturn_void_frame; iIntros "HQ !> !> % ?".
all: by iApply "HQ".
Qed.
Lemma wp_ctor_elim tu c args Q :
wp_ctor tu c args Q |-- Cbn (Reduce (wp_ctor' true tu c args Q)).
Proof. by rewrite wp_ctor.unlock. Qed.
End wp_ctor.
(|={top}=> wp_ctor tu c args (fun p => |={top}=> Q p))
|-- wp_ctor tu c args Q.
Abort.
Lemma wp_ctor_intro tu c args Q :
Cbn (Reduce (wp_ctor' false tu c args Q)) |-- wp_ctor tu c args Q.
Proof.
rewrite wp_ctor.unlock. repeat case_match; auto.
all: iIntros "($ & wp) !>"; iRevert "wp".
all: iApply bind_vars_frame; [done|]; iIntros (??).
all: initializer_list_frame.
all: iApply wp_frame; [done|]; iIntros (?).
all: iApply Kcleanup_frame; [done|].
all: iApply Kreturn_void_frame; iIntros "HQ !> !> % ?".
all: by iApply "HQ".
Qed.
Lemma wp_ctor_elim tu c args Q :
wp_ctor tu c args Q |-- Cbn (Reduce (wp_ctor' true tu c args Q)).
Proof. by rewrite wp_ctor.unlock. Qed.
End wp_ctor.
Definition wpd_bases `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(cls : globname) (this : ptr) (bases : list globname) (Q : epred) : mpred :=
let del_base base := FreeTemps.delete (Tnamed base) (this ,, _base cls base) in
interp tu (FreeTemps.seqs_rev (List.map del_base bases)) Q.
Section with_cpp.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : epred).
Lemma wpd_bases_frame tu tu' cls this bases Q Q' :
sub_module tu tu' ->
Q -* Q' |-- wpd_bases tu cls this bases Q -* wpd_bases tu' cls this bases Q'.
Proof. apply interp_frame_strong. Qed.
End with_cpp.
Definition wpd_members `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(cls : globname) (this : ptr) (members : list Member) (Q : epred) : mpred :=
let del_member m := FreeTemps.delete m.(mem_type) (this ,, _field (Field cls m.(mem_name))) in
interp tu (FreeTemps.seqs_rev (List.map del_member members)) Q.
Section with_cpp.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : epred).
Lemma wpd_members_frame tu tu' cls this members Q Q' :
sub_module tu tu' ->
Q -* Q' |-- wpd_members tu cls this members Q -* wpd_members tu' cls this members Q'.
Proof. apply interp_frame_strong. Qed.
End with_cpp.
wp_dtor tu dtor args Q defines the semantics of the destructor
dtor when applied to args with post-condition Q.
Note that destructors are not always syntactically distinguished from
function calls (e.g. in the case of c.~C()). Therefore, in order to
have a uniform specification, they need to return the underlying
memory (i.e. a this |-> tblockR (Tnamed cls) 1) to the caller. When
the program is destroying this object, e.g. due to stack allocation,
this resource will be consumed immediately.
#[local] Definition wp_dtor' `{Σ : cpp_logic, σ : genv} (upd : bool) (tu : translation_unit)
(dtor : Dtor) (args : list ptr) (Q : ptr -> epred) : mpred :=
match dtor.(d_body) with
| None => ERROR "wp_dtor: no body"
| Some body =>
match args with
| thisp :: nil =>
let ty := Tnamed dtor.(d_class) in
let wp_body (epilog : epred) : mpred :=
(dtor : Dtor) (args : list ptr) (Q : ptr -> epred) : mpred :=
match dtor.(d_body) with
| None => ERROR "wp_dtor: no body"
| Some body =>
match args with
| thisp :: nil =>
let ty := Tnamed dtor.(d_class) in
let wp_body (epilog : epred) : mpred :=
The function consumes a step
|>
let* :=
match body with
| Defaulted => fun k : Kpred => |={top}=>?upd k Normal
| UserDefined body => wp tu (Remp (Some thisp) None Tvoid) body
end%I
in
Kreturn_void epilog
in
match tu.(types) !! dtor.(d_class) with
| Some (Gstruct s) =>
letI* := wp_body in
thisp |-> structR dtor.(d_class) (cQp.mut 1) **
let* :=
match body with
| Defaulted => fun k : Kpred => |={top}=>?upd k Normal
| UserDefined body => wp tu (Remp (Some thisp) None Tvoid) body
end%I
in
Kreturn_void epilog
in
match tu.(types) !! dtor.(d_class) with
| Some (Gstruct s) =>
letI* := wp_body in
thisp |-> structR dtor.(d_class) (cQp.mut 1) **
Destroy fields, object identity, and base classes (reverse
order).
TODO: This should probably be named.
let* := wpd_members tu dtor.(d_class) thisp s.(s_fields) in
let* := wp_revert_identity thisp tu dtor.(d_class) in
let* := wpd_bases tu dtor.(d_class) thisp (List.map fst s.(s_bases)) in
let* := wp_revert_identity thisp tu dtor.(d_class) in
let* := wpd_bases tu dtor.(d_class) thisp (List.map fst s.(s_bases)) in
Return object's memory to the abstract machine.
thisp |-> tblockR ty (cQp.mut 1) -*
|={top}=>?upd |> Forall p : ptr, p |-> primR Tvoid (cQp.mut 1) Vvoid -*
Q p
| Some (Gunion u) =>
(*
The function epilog of a union destructor doesn't actually
destroy anything because it isn't clear what to destroy (this
is dictated by the C++ standard). Instead, the epilog provides
a fancy update to destroy things (baked into wp_body).
In practice, this means that programs can only destroy unions
automatically where they can prove the active entry has a
trivial destructor or is already destroyed.
*)
letI* := wp_body in
thisp |-> tblockR ty (cQp.mut 1) **
(
thisp |-> tblockR ty (cQp.mut 1) -*
|={top}=>?upd |> Forall p : ptr, p |-> primR Tvoid (cQp.mut 1) Vvoid -*
Q p
)
| _ => ERROR ("wp_dtor: not a structure or union")
end%I
| _ => ERROR "wp_dtor: expected one argument"
end
end.
mlock Definition wp_dtor `{Σ : cpp_logic, σ : genv} :=
Cbn (Reduce (wp_dtor' true)).
#[global] Arguments wp_dtor {_ _ _ _} _ _ _ _%_I : assert. (* mlock bug *)
Section wp_dtor.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : ptr -> epred).
Lemma wp_dtor_frame tu d args Q Q' :
|={top}=>?upd |> Forall p : ptr, p |-> primR Tvoid (cQp.mut 1) Vvoid -*
Q p
| Some (Gunion u) =>
(*
The function epilog of a union destructor doesn't actually
destroy anything because it isn't clear what to destroy (this
is dictated by the C++ standard). Instead, the epilog provides
a fancy update to destroy things (baked into wp_body).
In practice, this means that programs can only destroy unions
automatically where they can prove the active entry has a
trivial destructor or is already destroyed.
*)
letI* := wp_body in
thisp |-> tblockR ty (cQp.mut 1) **
(
thisp |-> tblockR ty (cQp.mut 1) -*
|={top}=>?upd |> Forall p : ptr, p |-> primR Tvoid (cQp.mut 1) Vvoid -*
Q p
)
| _ => ERROR ("wp_dtor: not a structure or union")
end%I
| _ => ERROR "wp_dtor: expected one argument"
end
end.
mlock Definition wp_dtor `{Σ : cpp_logic, σ : genv} :=
Cbn (Reduce (wp_dtor' true)).
#[global] Arguments wp_dtor {_ _ _ _} _ _ _ _%_I : assert. (* mlock bug *)
Section wp_dtor.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : ptr -> epred).
Lemma wp_dtor_frame tu d args Q Q' :
Forall p, Q p -* Q' p
|-- wp_dtor tu d args Q -* wp_dtor tu d args Q'.
Proof.
iIntros "HQ". rewrite wp_dtor.unlock.
repeat case_match; auto.
all: iIntros "wp !>"; iRevert "wp".
1,3: iIntros ">wp !>"; iRevert "wp".
3,4: iApply wp_frame; [done|]; iIntros (?).
all: iApply Kreturn_void_frame.
all: iIntros "($ & wp)"; iRevert "wp".
2,4: iApply wpd_members_frame; [done|].
2,3: iApply wp_revert_identity_frame =>//.
2,3: iApply wpd_bases_frame; [done|].
all: iIntros "HR R"; iMod ("HR" with "R") as "HR"; iIntros "!> !> % R".
all: iApply "HQ".
all: iApply ("HR" with "R").
Qed.
|-- wp_dtor tu d args Q -* wp_dtor tu d args Q'.
Proof.
iIntros "HQ". rewrite wp_dtor.unlock.
repeat case_match; auto.
all: iIntros "wp !>"; iRevert "wp".
1,3: iIntros ">wp !>"; iRevert "wp".
3,4: iApply wp_frame; [done|]; iIntros (?).
all: iApply Kreturn_void_frame.
all: iIntros "($ & wp)"; iRevert "wp".
2,4: iApply wpd_members_frame; [done|].
2,3: iApply wp_revert_identity_frame =>//.
2,3: iApply wpd_bases_frame; [done|].
all: iIntros "HR R"; iMod ("HR" with "R") as "HR"; iIntros "!> !> % R".
all: iApply "HQ".
all: iApply ("HR" with "R").
Qed.
Unsupported
Lemma wp_dtor_shift tu d args Q :
(|={top}=> wp_dtor tu d args (fun p => |={top}=> Q p))
|-- wp_dtor tu d args Q.
Abort.
Lemma wp_dtor_intro tu d args Q :
Cbn (Reduce (wp_dtor' false tu d args Q)) |-- wp_dtor tu d args Q.
Proof.
rewrite wp_dtor.unlock. repeat case_match; auto.
all: iIntros "wp !>"; iRevert "wp".
1,3: rewrite -fupd_intro.
3,4: iApply wp_frame; [done|]; iIntros (?).
all: iApply Kreturn_void_frame.
all: iIntros "($ & wp)"; iRevert "wp".
2,4: iApply wpd_members_frame; [done|].
2,3: iApply wp_revert_identity_frame =>//.
2,3: iApply wpd_bases_frame; [done|].
all: iIntros "HR R !>"; iSpecialize ("HR" with "R"); iIntros "!> % R".
all: iApply ("HR" with "R").
Qed.
Lemma wp_dtor_elim tu d args Q :
wp_dtor tu d args Q |-- Cbn (Reduce (wp_dtor' true tu d args Q)).
Proof. by rewrite wp_dtor.unlock. Qed.
End wp_dtor.
(*
template<typename T>
struct optional {
union U { T val; char nothingsizeof(T); ~u() {} } u;
bool has_value;
~optional() {
if (has_value)
val.~T();
} // has_value.~bool(); u.~U();
}
p |-> classR .... -* |==> p |-> tblockR "class" 1
union { int x; short y; } u;
// u |-> tblockR "U" 1
// CREATE(0)
u.x = 1;
// DESTROY(0)
// CREATE(1)
u.y = 1;
// DESTROY(1)
// u |-> tblockR "U" 1
// CREATE(n) implicit pick a union branch
u |-> tblockR "U" 1 ==*
u |-> (upaddingR "U" 1 ** ucaseR "U" 0 1 ** _field "x" |-> uninitR "U" 1)
// DESTROY(n) implicit "destruction" of the union
u |-> (upaddingR "U" 1 ** ucaseR "U" 0 1 ** _field "x" |-> uninitR "U" 1) ==*
u |-> tblockR "U" 1
*)
Definition dtor_ok `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(dtor : Dtor) (spec : function_spec) : mpred :=
[| type_of_spec spec = type_of_value (Odestructor dtor) |] **
□ Forall (Q : ptr -> mpred) vals,
spec.(fs_spec) vals Q -* wp_dtor tu dtor vals Q.
(|={top}=> wp_dtor tu d args (fun p => |={top}=> Q p))
|-- wp_dtor tu d args Q.
Abort.
Lemma wp_dtor_intro tu d args Q :
Cbn (Reduce (wp_dtor' false tu d args Q)) |-- wp_dtor tu d args Q.
Proof.
rewrite wp_dtor.unlock. repeat case_match; auto.
all: iIntros "wp !>"; iRevert "wp".
1,3: rewrite -fupd_intro.
3,4: iApply wp_frame; [done|]; iIntros (?).
all: iApply Kreturn_void_frame.
all: iIntros "($ & wp)"; iRevert "wp".
2,4: iApply wpd_members_frame; [done|].
2,3: iApply wp_revert_identity_frame =>//.
2,3: iApply wpd_bases_frame; [done|].
all: iIntros "HR R !>"; iSpecialize ("HR" with "R"); iIntros "!> % R".
all: iApply ("HR" with "R").
Qed.
Lemma wp_dtor_elim tu d args Q :
wp_dtor tu d args Q |-- Cbn (Reduce (wp_dtor' true tu d args Q)).
Proof. by rewrite wp_dtor.unlock. Qed.
End wp_dtor.
(*
template<typename T>
struct optional {
union U { T val; char nothingsizeof(T); ~u() {} } u;
bool has_value;
~optional() {
if (has_value)
val.~T();
} // has_value.~bool(); u.~U();
}
p |-> classR .... -* |==> p |-> tblockR "class" 1
union { int x; short y; } u;
// u |-> tblockR "U" 1
// CREATE(0)
u.x = 1;
// DESTROY(0)
// CREATE(1)
u.y = 1;
// DESTROY(1)
// u |-> tblockR "U" 1
// CREATE(n) implicit pick a union branch
u |-> tblockR "U" 1 ==*
u |-> (upaddingR "U" 1 ** ucaseR "U" 0 1 ** _field "x" |-> uninitR "U" 1)
// DESTROY(n) implicit "destruction" of the union
u |-> (upaddingR "U" 1 ** ucaseR "U" 0 1 ** _field "x" |-> uninitR "U" 1) ==*
u |-> tblockR "U" 1
*)
Definition dtor_ok `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
(dtor : Dtor) (spec : function_spec) : mpred :=
[| type_of_spec spec = type_of_value (Odestructor dtor) |] **
□ Forall (Q : ptr -> mpred) vals,
spec.(fs_spec) vals Q -* wp_dtor tu dtor vals Q.