bedrock.lang.cpp.logic.heap_pred.block
(*
* Copyright (c) 2023 BedRock Systems, Inc.
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import bedrock.lang.cpp.logic.heap_pred.prelude.
Require Import bedrock.lang.cpp.logic.heap_pred.valid.
Require Import bedrock.lang.cpp.logic.heap_pred.null.
Require Import bedrock.lang.cpp.logic.heap_pred.simple.
Require Import bedrock.lang.cpp.logic.heap_pred.any.
Import rep_defs.INTERNAL. (* for access to unfold_at *)
#[local] Set Printing Coercions.
Implicit Types (σ : genv) (p : ptr) (o : offset).
Section with_cpp.
Context `{Σ : cpp_logic} {σ : genv}.
* Copyright (c) 2023 BedRock Systems, Inc.
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import bedrock.lang.cpp.logic.heap_pred.prelude.
Require Import bedrock.lang.cpp.logic.heap_pred.valid.
Require Import bedrock.lang.cpp.logic.heap_pred.null.
Require Import bedrock.lang.cpp.logic.heap_pred.simple.
Require Import bedrock.lang.cpp.logic.heap_pred.any.
Import rep_defs.INTERNAL. (* for access to unfold_at *)
#[local] Set Printing Coercions.
Implicit Types (σ : genv) (p : ptr) (o : offset).
Section with_cpp.
Context `{Σ : cpp_logic} {σ : genv}.
blockR sz q represents q ownership of a contiguous chunk of
sz bytes without any C++ structure on top of it.
Definition blockR_def {σ} sz (q : cQp.t) : Rep :=
_offsetR (o_sub σ Tbyte (Z.of_N sz)) validR **
(* ^ Encodes valid_ptr (this . Tbyte ! sz). This is
necessary to get l |-> blockR n -|- l |-> blockR n ** l .[ Tbyte ! m] |-> blockR 0. *)
[∗list] i ∈ seq 0 (N.to_nat sz),
_offsetR (o_sub σ Tbyte (Z.of_nat i)) (anyR Tbyte q).
Definition blockR_aux : seal (@blockR_def). Proof. by eexists. Qed.
Definition blockR := blockR_aux.(unseal).
Definition blockR_eq : @blockR = _ := blockR_aux.(seal_eq).
#[global] Arguments blockR {_} _%_N _%_Qp.
#[global] Instance blockR_timeless sz q :
Timeless (blockR sz q).
Proof. rewrite blockR_eq /blockR_def. unfold_at. apply _. Qed.
#[global] Instance blockR_cfractional sz :
CFractional (blockR sz).
Proof. rewrite blockR_eq. apply _. Qed.
#[global] Instance blockR_as_cfractional sz :
AsCFractional0 (blockR sz).
Proof. solve_as_cfrac. Qed.
#[global] Instance blockR_observe_frac_valid sz :
TCLt (0 ?= sz)%N ->
CFracValid0 (blockR sz).
Proof.
rewrite TCLt_N blockR_eq/blockR_def. intros.
destruct (N.to_nat sz) eqn:?; [ lia | ] => /=.
try solve_cfrac_valid.
Qed.
Lemma nullptr_blockR sz q :
nullptr |-> blockR sz q |-- [| sz = 0%N |].
Proof.
rewrite blockR_eq/blockR_def _at_sep.
destruct sz; eauto.
have->: (N.to_nat (N.pos p) = S (N.to_nat (N.pos p - 1))) by lia.
rewrite -cons_seq /= o_sub_0 => //.
rewrite !_at_offsetR _offsetR_id _at_sep.
iIntros "(?&B&C)".
iDestruct (observe (nullptr |-> nonnullR) with "B") as "X".
rewrite _at_nonnullR.
by iDestruct "X" as %[].
Qed.
Lemma blockR_disjoint (l : ptr):
l |-> blockR 1 (cQp.m 1) |-- l |-> blockR 1 (cQp.m 1) -* False.
Proof.
iIntros "K L". iCombine "K L" as "P".
by iDestruct (observe [| _ ≤ 1 |]%Qp with "P") as %?.
Qed.
(* tblockR ty is a blockR that is the size of ty and properly aligned.
* it is a convenient short-hand since it happens frequently, but there is nothing
* special about it.
*)
Definition tblockR (ty : Rtype) (q : cQp.t) : Rep :=
match size_of σ ty , align_of ty with
| Some sz , Some al => blockR (σ:=σ) sz q ** alignedR al
| _ , _ => False
end.
#[global] Instance tblockR_timeless ty q :
Timeless (tblockR ty q).
Proof. rewrite/tblockR. case_match; apply _. Qed.
#[global] Instance tblockR_cfractional ty :
CFractional (tblockR ty).
Proof.
rewrite/tblockR. do 2!(case_match; last by apply _).
apply _.
Qed.
#[global] Instance tblockR_as_cfractional ty : AsCFractional0 (tblockR ty).
Proof. solve_as_cfrac. Qed.
#[global] Instance tblockR_observe_frac_valid ty n :
SizeOf ty n -> TCLt (0 ?= n)%N ->
CFracValid0 (tblockR ty).
Proof.
rewrite/tblockR=>-> ?. case_match; solve_cfrac_valid.
Qed.
#[global] Instance blockR_nonnull n q :
TCLt (0 ?= n)%N -> Observe nonnullR (blockR n q).
Proof.
rewrite TCLt_N blockR_eq/blockR_def.
destruct (N.to_nat n) eqn:Hn; [ lia | ] => {Hn} /=.
rewrite o_sub_0 ?_offsetR_id; [ | by eauto].
assert (TCEq (zero_sized_array (lang:=lang.cpp) Tbyte) false) by done.
apply _.
Qed.
#[global] Instance blockR_valid_ptr sz q : Observe validR (blockR sz q).
Proof.
rewrite blockR_eq/blockR_def.
destruct sz.
{ iIntros "[#A _]".
rewrite o_sub_0; last by econstructor.
rewrite _offsetR_id. eauto. }
{ iIntros "[_ X]".
unfold N.to_nat. destruct (Pos.to_nat p) eqn:?; first lia.
simpl. iDestruct "X" as "[X _]".
rewrite o_sub_0; last by econstructor. rewrite _offsetR_id.
iApply (observe with "X"). }
Qed.
#[global] Instance tblockR_nonnull n ty q :
SizeOf ty n -> TCLt (0 ?= n)%N ->
Observe nonnullR (tblockR ty q).
Proof.
intros Heq ?. rewrite/tblockR {}Heq.
case_match; by apply _.
Qed.
#[global] Instance tblockR_valid_ptr ty q : Observe validR (tblockR ty q).
Proof.
rewrite /tblockR. case_match; refine _.
case_match; refine _.
Qed.
End with_cpp.
_offsetR (o_sub σ Tbyte (Z.of_N sz)) validR **
(* ^ Encodes valid_ptr (this . Tbyte ! sz). This is
necessary to get l |-> blockR n -|- l |-> blockR n ** l .[ Tbyte ! m] |-> blockR 0. *)
[∗list] i ∈ seq 0 (N.to_nat sz),
_offsetR (o_sub σ Tbyte (Z.of_nat i)) (anyR Tbyte q).
Definition blockR_aux : seal (@blockR_def). Proof. by eexists. Qed.
Definition blockR := blockR_aux.(unseal).
Definition blockR_eq : @blockR = _ := blockR_aux.(seal_eq).
#[global] Arguments blockR {_} _%_N _%_Qp.
#[global] Instance blockR_timeless sz q :
Timeless (blockR sz q).
Proof. rewrite blockR_eq /blockR_def. unfold_at. apply _. Qed.
#[global] Instance blockR_cfractional sz :
CFractional (blockR sz).
Proof. rewrite blockR_eq. apply _. Qed.
#[global] Instance blockR_as_cfractional sz :
AsCFractional0 (blockR sz).
Proof. solve_as_cfrac. Qed.
#[global] Instance blockR_observe_frac_valid sz :
TCLt (0 ?= sz)%N ->
CFracValid0 (blockR sz).
Proof.
rewrite TCLt_N blockR_eq/blockR_def. intros.
destruct (N.to_nat sz) eqn:?; [ lia | ] => /=.
try solve_cfrac_valid.
Qed.
Lemma nullptr_blockR sz q :
nullptr |-> blockR sz q |-- [| sz = 0%N |].
Proof.
rewrite blockR_eq/blockR_def _at_sep.
destruct sz; eauto.
have->: (N.to_nat (N.pos p) = S (N.to_nat (N.pos p - 1))) by lia.
rewrite -cons_seq /= o_sub_0 => //.
rewrite !_at_offsetR _offsetR_id _at_sep.
iIntros "(?&B&C)".
iDestruct (observe (nullptr |-> nonnullR) with "B") as "X".
rewrite _at_nonnullR.
by iDestruct "X" as %[].
Qed.
Lemma blockR_disjoint (l : ptr):
l |-> blockR 1 (cQp.m 1) |-- l |-> blockR 1 (cQp.m 1) -* False.
Proof.
iIntros "K L". iCombine "K L" as "P".
by iDestruct (observe [| _ ≤ 1 |]%Qp with "P") as %?.
Qed.
(* tblockR ty is a blockR that is the size of ty and properly aligned.
* it is a convenient short-hand since it happens frequently, but there is nothing
* special about it.
*)
Definition tblockR (ty : Rtype) (q : cQp.t) : Rep :=
match size_of σ ty , align_of ty with
| Some sz , Some al => blockR (σ:=σ) sz q ** alignedR al
| _ , _ => False
end.
#[global] Instance tblockR_timeless ty q :
Timeless (tblockR ty q).
Proof. rewrite/tblockR. case_match; apply _. Qed.
#[global] Instance tblockR_cfractional ty :
CFractional (tblockR ty).
Proof.
rewrite/tblockR. do 2!(case_match; last by apply _).
apply _.
Qed.
#[global] Instance tblockR_as_cfractional ty : AsCFractional0 (tblockR ty).
Proof. solve_as_cfrac. Qed.
#[global] Instance tblockR_observe_frac_valid ty n :
SizeOf ty n -> TCLt (0 ?= n)%N ->
CFracValid0 (tblockR ty).
Proof.
rewrite/tblockR=>-> ?. case_match; solve_cfrac_valid.
Qed.
#[global] Instance blockR_nonnull n q :
TCLt (0 ?= n)%N -> Observe nonnullR (blockR n q).
Proof.
rewrite TCLt_N blockR_eq/blockR_def.
destruct (N.to_nat n) eqn:Hn; [ lia | ] => {Hn} /=.
rewrite o_sub_0 ?_offsetR_id; [ | by eauto].
assert (TCEq (zero_sized_array (lang:=lang.cpp) Tbyte) false) by done.
apply _.
Qed.
#[global] Instance blockR_valid_ptr sz q : Observe validR (blockR sz q).
Proof.
rewrite blockR_eq/blockR_def.
destruct sz.
{ iIntros "[#A _]".
rewrite o_sub_0; last by econstructor.
rewrite _offsetR_id. eauto. }
{ iIntros "[_ X]".
unfold N.to_nat. destruct (Pos.to_nat p) eqn:?; first lia.
simpl. iDestruct "X" as "[X _]".
rewrite o_sub_0; last by econstructor. rewrite _offsetR_id.
iApply (observe with "X"). }
Qed.
#[global] Instance tblockR_nonnull n ty q :
SizeOf ty n -> TCLt (0 ?= n)%N ->
Observe nonnullR (tblockR ty q).
Proof.
intros Heq ?. rewrite/tblockR {}Heq.
case_match; by apply _.
Qed.
#[global] Instance tblockR_valid_ptr ty q : Observe validR (tblockR ty q).
Proof.
rewrite /tblockR. case_match; refine _.
case_match; refine _.
Qed.
End with_cpp.