bedrock.lang.cpp.logic.initializers
(*
* Copyright (c) 2020-2024 BedRock Systems, Inc.
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import Stdlib.Lists.List.
Require Import bedrock.lang.proofmode.proofmode.
Require Import bedrock.prelude.numbers.
Require Import bedrock.prelude.bool.
Require Import bedrock.lang.cpp.syntax.
Require Import bedrock.lang.cpp.semantics.
Require Import bedrock.lang.bi.errors.
Require Import bedrock.lang.cpp.logic.pred.
Require Import bedrock.lang.cpp.logic.path_pred.
Require Import bedrock.lang.cpp.logic.heap_pred.
Require Import bedrock.lang.cpp.logic.wp.
Require Import bedrock.lang.cpp.logic.destroy.
Require Import bedrock.lang.cpp.logic.const.
#[local] Set Printing Coercions.
* Copyright (c) 2020-2024 BedRock Systems, Inc.
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import Stdlib.Lists.List.
Require Import bedrock.lang.proofmode.proofmode.
Require Import bedrock.prelude.numbers.
Require Import bedrock.prelude.bool.
Require Import bedrock.lang.cpp.syntax.
Require Import bedrock.lang.cpp.semantics.
Require Import bedrock.lang.bi.errors.
Require Import bedrock.lang.cpp.logic.pred.
Require Import bedrock.lang.cpp.logic.path_pred.
Require Import bedrock.lang.cpp.logic.heap_pred.
Require Import bedrock.lang.cpp.logic.wp.
Require Import bedrock.lang.cpp.logic.destroy.
Require Import bedrock.lang.cpp.logic.const.
#[local] Set Printing Coercions.
The C++ language provides several types of initialization:
The BRiCk frontend resolves (via clang) the rules for which one of
these is used in each context. Therefore, in the semantics, we are
left with only two cases:
Note that the frontend inserts constructor calls to default initialize
objects, so Tnamed types can *not* be default initialized.
default_initialize_array (default_initialize tu ty) tu ty len p Q
initializes an array of type ty[len] at pointer p using
default_initialize (from right to left).
NOTE that default initialization of an array of constants is a
compile-time error, so we don't need to worry about that case.
Also, note that arrays of length 0 are not legal so we are
guaranteed to have to initialize a value which will result in an
ERROR.
- default initialization <https://eel.is/c++draft/dcl.initdef:default-initialization>
- value initialization
- zero initialization <https://eel.is/c++draft/dcl.initdef:zero-initialization> - direct initialization
- zero initialization <https://eel.is/c++draft/dcl.initdef:zero-initialization> - direct initialization
- default initialization (implemented by default_initialize), which
- expression initialization (implemented by wp_initialize), which
Default initilalization
#[local] Definition default_initialize_array_body `{Σ : cpp_logic, σ : genv}
(u : bool) (default_initialize : ptr -> (FreeTemps -> epred) -> mpred)
(tu : translation_unit) (ty : exprtype) (len : N) (p : ptr) (Q : FreeTemps -> epred) : mpred :=
let folder i PP :=
default_initialize (p ,, o_sub _ ty (Z.of_N i)) (fun free' => interp tu free' PP)
in
foldr folder (p |-> type_ptrR (Tarray ty len) -* |={top}=>?u Q FreeTemps.id) (seqN 0 len).
mlock
Definition default_initialize_array `{Σ : cpp_logic, σ : genv} :
∀ (default_initialize : ptr -> (FreeTemps -> epred) -> mpred)
(tu : translation_unit) (ty : exprtype) (len : N) (p : ptr)
(Q : FreeTemps -> epred), mpred :=
Cbn (Reduce (default_initialize_array_body true)).
#[global] Arguments default_initialize_array {_ _ _ _} _ _ _ _ _ _%_I : assert. (* mlock bug *)
default_initialize tu ty p Q default initializes the memory at p
according to the type ty.
NOTE this assumes that the underlying memory has already been given to
the C++ abstract machine.
NOTE: <https://eel.is/c++draft/dcl.initgeneral-7>:
| (7) To default-initialize an object of type T means:
| (7.1) If T is a (possibly cv-qualified) class type ([class]), constructors are considered.
| The applicable constructors are enumerated ([over.match.ctor]), and the best one for
| the initializer () is chosen through overload resolution ([over.match]).
| The constructor thus selected is called, with an empty argument list, to initialize
| the object.
| (7.2) If T is an array type, each element is default-initialized.
| (7.3) Otherwise, no initialization is performed.
and [default_initialize] corresponds to [default-initialization] as
described above.
#[local]
Definition default_initialize_body `{Σ : cpp_logic, σ : genv}
(u : bool) (default_initialize : exprtype -> ptr -> (FreeTemps -> epred) -> mpred)
(tu : translation_unit)
(ty : exprtype) (p : ptr) (Q : FreeTemps -> epred) : mpred :=
let ERROR := funI m => |={top}=>?u ERROR m in
let UNSUPPORTED := funI m => |={top}=>?u UNSUPPORTED m in
match ty with
| Tnum _ _
| Tchar_ _
| Tptr _
| Tbool
| Tfloat_ _
| Tnullptr
| Tenum _ =>
let rty := erase_qualifiers ty in
p |-> uninitR rty (cQp.m 1) -* |={top}=>?u Q FreeTemps.id
| Tarray ety sz =>
default_initialize_array (default_initialize ety) tu ety sz p (fun _ => Q FreeTemps.id)
| Tincomplete_array _ => ERROR "default initialize incomplete array"
| Tvariable_array _ _ => ERROR "default initialize variable array"
| Tref _
| Trv_ref _ => ERROR "default initialization of reference"
| Tvoid => ERROR "default initialization of void"
| Tfunction _ => ERROR "default initialization of functions"
| Tmember_pointer _ _ => ERROR "default initialization of member pointers"
| Tnamed _ => |={top}=>?u False (* default initialization of aggregates is done at elaboration time. *)
| Tarch _ _ => UNSUPPORTED "default initialization of architecture type"
| Tqualified q ty =>
if q_volatile q then UNSUPPORTED "default initialize volatile"
else if q_const q then ERROR "default initialize const"
else default_initialize ty p Q
| Tunsupported msg => UNSUPPORTED msg
| Tdecltype _ => ERROR "default initialization requires a runtime type, got 'decltype(())'"
| Texprtype _ => ERROR "default initialization requires a runtime type, got 'decltype()'"
| Tparam _ | Tresult_param _ | Tresult_global _
| Tresult_unop _ _ | Tresult_binop _ _ _
| Tresult_call _ _ | Tresult_member_call _ _ _
| Tresult_member _ _ | Tresult_parenlist _ _ => ERROR "default initialization requires a runtime type, got unresolved type"
end%bs%I.
mlock
Definition default_initialize `{Σ : cpp_logic, σ : genv} (tu : translation_unit)
: ∀ (ty : exprtype) (p : ptr) (Q : FreeTemps -> epred), mpred :=
fix default_initialize ty p Q {struct ty} :=
Cbn (Reduce (default_initialize_body true) default_initialize tu ty p Q).
#[global] Arguments default_initialize {_ _ _ _} _ _ _ _%_I : assert. (* mlock bug *)
Section unfold.
Context `{Σ : cpp_logic, σ : genv}.
Lemma default_initialize_unfold ty tu :
default_initialize tu ty =
fun p Q => Cbn (Reduce (default_initialize_body true) (default_initialize tu) tu ty p Q).
Proof. rewrite unlock. by destruct ty. Qed.
End unfold.
Unfold for one type, failing if there's nothing to do.
Ltac default_initialize_unfold :=
lazymatch goal with
| |- context [default_initialize _ ?ty] => rewrite !(default_initialize_unfold ty)
| _ => fail "[default_initialize] not found"
end.
Section default_initialize.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : FreeTemps -> epred).
Implicit Types (di : ptr -> (FreeTemps -> epred) -> mpred).
#[local] Notation FRAME di di' :=
(∀ p Q Q', (Forall f, Q f -* Q' f) |-- di p Q -* di' p Q')
(only parsing).
#[clearbody]
Let default_initialize_array_frame' di di' tu tu' ty sz Q Q' (p : ptr) :
FRAME di di' ->
sub_module tu tu' ->
(Forall f, Q f -* Q' f)
|-- default_initialize_array di tu ty sz p Q -* default_initialize_array di' tu' ty sz p Q'.
Proof.
intros IHty Hsub. rewrite unlock.
generalize dependent (p |-> type_ptrR (Tarray ty sz)).
induction (seqN 0 sz) =>/=; intros.
- iIntros "X a b". iApply "X". by iApply "a".
- iIntros "F". iApply IHty.
iIntros (?). iApply interp_frame_strong; [done|]. iApply (IHl with "F").
Defined.
#[clearbody]
Let default_initialize_array_shift' di tu ty sz p Q :
FRAME di di ->
(∀ p Q, (|={top}=> di p (fun f => |={top}=> Q f)) |-- di p Q) ->
(|={top}=> default_initialize_array di tu ty sz p (fun f => |={top}=> Q f))
|-- default_initialize_array di tu ty sz p Q.
Proof.
intros Hframe Hshift. rewrite unlock.
induction (seqN 0 sz); cbn.
{ iIntros ">HQ V". by iMod ("HQ" with "V"). }
{ iIntros "wp". iApply Hshift. iApply (Hframe with "[] wp"). iIntros (f) "wp !>".
iApply (interp_frame with "[] wp"). rewrite -IHl. by iIntros "? !>". }
Defined.
lazymatch goal with
| |- context [default_initialize _ ?ty] => rewrite !(default_initialize_unfold ty)
| _ => fail "[default_initialize] not found"
end.
Section default_initialize.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : FreeTemps -> epred).
Implicit Types (di : ptr -> (FreeTemps -> epred) -> mpred).
#[local] Notation FRAME di di' :=
(∀ p Q Q', (Forall f, Q f -* Q' f) |-- di p Q -* di' p Q')
(only parsing).
#[clearbody]
Let default_initialize_array_frame' di di' tu tu' ty sz Q Q' (p : ptr) :
FRAME di di' ->
sub_module tu tu' ->
(Forall f, Q f -* Q' f)
|-- default_initialize_array di tu ty sz p Q -* default_initialize_array di' tu' ty sz p Q'.
Proof.
intros IHty Hsub. rewrite unlock.
generalize dependent (p |-> type_ptrR (Tarray ty sz)).
induction (seqN 0 sz) =>/=; intros.
- iIntros "X a b". iApply "X". by iApply "a".
- iIntros "F". iApply IHty.
iIntros (?). iApply interp_frame_strong; [done|]. iApply (IHl with "F").
Defined.
#[clearbody]
Let default_initialize_array_shift' di tu ty sz p Q :
FRAME di di ->
(∀ p Q, (|={top}=> di p (fun f => |={top}=> Q f)) |-- di p Q) ->
(|={top}=> default_initialize_array di tu ty sz p (fun f => |={top}=> Q f))
|-- default_initialize_array di tu ty sz p Q.
Proof.
intros Hframe Hshift. rewrite unlock.
induction (seqN 0 sz); cbn.
{ iIntros ">HQ V". by iMod ("HQ" with "V"). }
{ iIntros "wp". iApply Hshift. iApply (Hframe with "[] wp"). iIntros (f) "wp !>".
iApply (interp_frame with "[] wp"). rewrite -IHl. by iIntros "? !>". }
Defined.
TODO this should be generalized to different σ but, in that case
it relies on the fact that ty is defined in both environments.
Lemma default_initialize_frame tu tu' ty this Q Q' :
sub_module tu tu' ->
(Forall f, Q f -* Q' f)
|-- default_initialize tu ty this Q -* default_initialize tu' ty this Q'.
Proof.
intros.
move: this Q Q'. induction ty=>this Q Q'; default_initialize_unfold; try iIntros "? []".
all: iIntros "HQ wp"; first
[ by iIntros "R"; iMod ("wp" with "R") as "Q"; iApply ("HQ" with "Q")
| by iMod "wp"; iExFalso; rewrite ?ERROR_elim ?UNSUPPORTED_elim
| idtac ].
{ (* arrays *)
iApply (default_initialize_array_frame' with "[HQ] wp"); [done..|].
iIntros (?) "Q". iApply ("HQ" with "Q"). }
{ (* qualifiers *)
case_match; eauto.
case_match; first by iMod "wp"; iExFalso; rewrite ERROR_elim.
iApply (IHty with "HQ wp"). }
Qed.
Lemma default_initialize_array_frame tu tu' ty sz Q Q' (p : ptr) :
sub_module tu tu' ->
(Forall f, Q f -* Q' f)
|-- default_initialize_array (default_initialize tu ty) tu ty sz p Q
-* default_initialize_array (default_initialize tu' ty) tu' ty sz p Q'.
Proof. auto using default_initialize_frame. Qed.
Lemma default_initialize_shift tu ty this Q :
(|={top}=> default_initialize tu ty this (fun f => |={top}=> Q f))
|-- default_initialize tu ty this Q.
Proof.
move: this Q. induction ty=>this Q; default_initialize_unfold;
auto using fupd_elim, fupd_intro.
all: try by iIntros ">HQ R"; iMod ("HQ" with "R").
{ (* arrays *)
apply default_initialize_array_shift'; auto.
intros. exact: default_initialize_frame. }
{ (* qualifiers *)
do 2 (case_match; auto using fupd_elim, fupd_intro). }
Qed.
Lemma default_initialize_array_shift tu ty sz p Q :
(|={top}=> default_initialize_array (default_initialize tu ty) tu ty sz p (fun f => |={top}=> Q f))
|-- default_initialize_array (default_initialize tu ty) tu ty sz p Q.
Proof.
apply default_initialize_array_shift'.
- intros. exact: default_initialize_frame.
- apply default_initialize_shift.
Qed.
#[global] Instance: Params (@default_initialize) 7 := {}.
#[local] Notation INIT R := (
∀ tu ty this,
Proper (pointwise_relation _ R ==> R) (default_initialize tu ty this)
) (only parsing).
#[global] Instance default_initialize_mono : INIT bi_entails.
Proof.
intros * Q1 Q2 HQ. iIntros "wp".
iApply (default_initialize_frame with "[] wp"); [done|]. iIntros (free) "Q".
by iApply HQ.
Qed.
#[global] Instance default_initialize_flip_mono : INIT (flip bi_entails).
Proof. repeat intro. by apply default_initialize_mono. Qed.
#[global] Instance default_initialize_proper : INIT equiv.
Proof. intros * Q1 Q2 HQ. by split'; apply default_initialize_mono=>free; rewrite HQ. Qed.
#[global] Instance: Params (@default_initialize_array) 9 := {}.
#[local] Notation ARRAY R := (
∀ tu ty sz p,
Proper (pointwise_relation _ R ==> R)
(default_initialize_array (default_initialize tu ty) tu ty sz p)
) (only parsing).
#[global] Instance default_initialize_array_mono : ARRAY bi_entails.
Proof.
intros * Q1 Q2 HQ. iIntros "wp".
iApply (default_initialize_array_frame with "[] wp"); [done|].
iIntros (free) "Q". by iApply HQ.
Qed.
#[global] Instance default_initialize_array_flip_mono : ARRAY (flip bi_entails).
Proof. repeat intro. by apply default_initialize_array_mono. Qed.
#[global] Instance default_initialize_array_proper : ARRAY equiv.
Proof. intros * Q1 Q2 HQ. by split'; apply default_initialize_array_mono=>free; rewrite HQ. Qed.
Lemma default_initialize_array_intro tu ty sz (p : ptr) Q :
Cbn (Reduce (default_initialize_array_body false) (default_initialize tu ty) tu ty sz p Q)
|-- default_initialize_array (default_initialize tu ty) tu ty sz p Q.
Proof.
rewrite default_initialize_array.unlock.
induction (seqN 0 sz) as [|???IH]; cbn.
{ by rewrite -fupd_intro. }
iIntros "wp". iApply (default_initialize_frame with "[] wp"); [done|].
iIntros (?) "wp". iApply (interp_frame with "[] wp").
iIntros "wp". iApply (IH with "wp").
Qed.
Lemma default_initialize_array_elim tu ty sz (p : ptr) Q :
default_initialize_array (default_initialize tu ty) tu ty sz p Q
|-- Cbn (Reduce (default_initialize_array_body true) (default_initialize tu ty) tu ty sz p Q).
Proof. by rewrite default_initialize_array.unlock. Qed.
Lemma default_initialize_intro tu ty (p : ptr) Q :
Cbn (Reduce (default_initialize_body false) (default_initialize tu) tu ty p Q)
|-- default_initialize tu ty p Q.
Proof.
rewrite (default_initialize_unfold ty). induction ty; first
[ by auto using fupd_intro
| by iIntros "HQ R"; iApply ("HQ" with "R")
| idtac ].
{ (* qualifiers *)
destruct (q_volatile q); auto using fupd_intro.
destruct (q_const q); auto using fupd_intro. }
Qed.
Lemma default_initialize_elim tu ty (p : ptr) Q :
default_initialize tu ty p Q
|-- Cbn (Reduce (default_initialize_body true) (default_initialize tu) tu ty p Q).
Proof. rewrite default_initialize.unlock. by destruct ty. Qed.
End default_initialize.
sub_module tu tu' ->
(Forall f, Q f -* Q' f)
|-- default_initialize tu ty this Q -* default_initialize tu' ty this Q'.
Proof.
intros.
move: this Q Q'. induction ty=>this Q Q'; default_initialize_unfold; try iIntros "? []".
all: iIntros "HQ wp"; first
[ by iIntros "R"; iMod ("wp" with "R") as "Q"; iApply ("HQ" with "Q")
| by iMod "wp"; iExFalso; rewrite ?ERROR_elim ?UNSUPPORTED_elim
| idtac ].
{ (* arrays *)
iApply (default_initialize_array_frame' with "[HQ] wp"); [done..|].
iIntros (?) "Q". iApply ("HQ" with "Q"). }
{ (* qualifiers *)
case_match; eauto.
case_match; first by iMod "wp"; iExFalso; rewrite ERROR_elim.
iApply (IHty with "HQ wp"). }
Qed.
Lemma default_initialize_array_frame tu tu' ty sz Q Q' (p : ptr) :
sub_module tu tu' ->
(Forall f, Q f -* Q' f)
|-- default_initialize_array (default_initialize tu ty) tu ty sz p Q
-* default_initialize_array (default_initialize tu' ty) tu' ty sz p Q'.
Proof. auto using default_initialize_frame. Qed.
Lemma default_initialize_shift tu ty this Q :
(|={top}=> default_initialize tu ty this (fun f => |={top}=> Q f))
|-- default_initialize tu ty this Q.
Proof.
move: this Q. induction ty=>this Q; default_initialize_unfold;
auto using fupd_elim, fupd_intro.
all: try by iIntros ">HQ R"; iMod ("HQ" with "R").
{ (* arrays *)
apply default_initialize_array_shift'; auto.
intros. exact: default_initialize_frame. }
{ (* qualifiers *)
do 2 (case_match; auto using fupd_elim, fupd_intro). }
Qed.
Lemma default_initialize_array_shift tu ty sz p Q :
(|={top}=> default_initialize_array (default_initialize tu ty) tu ty sz p (fun f => |={top}=> Q f))
|-- default_initialize_array (default_initialize tu ty) tu ty sz p Q.
Proof.
apply default_initialize_array_shift'.
- intros. exact: default_initialize_frame.
- apply default_initialize_shift.
Qed.
#[global] Instance: Params (@default_initialize) 7 := {}.
#[local] Notation INIT R := (
∀ tu ty this,
Proper (pointwise_relation _ R ==> R) (default_initialize tu ty this)
) (only parsing).
#[global] Instance default_initialize_mono : INIT bi_entails.
Proof.
intros * Q1 Q2 HQ. iIntros "wp".
iApply (default_initialize_frame with "[] wp"); [done|]. iIntros (free) "Q".
by iApply HQ.
Qed.
#[global] Instance default_initialize_flip_mono : INIT (flip bi_entails).
Proof. repeat intro. by apply default_initialize_mono. Qed.
#[global] Instance default_initialize_proper : INIT equiv.
Proof. intros * Q1 Q2 HQ. by split'; apply default_initialize_mono=>free; rewrite HQ. Qed.
#[global] Instance: Params (@default_initialize_array) 9 := {}.
#[local] Notation ARRAY R := (
∀ tu ty sz p,
Proper (pointwise_relation _ R ==> R)
(default_initialize_array (default_initialize tu ty) tu ty sz p)
) (only parsing).
#[global] Instance default_initialize_array_mono : ARRAY bi_entails.
Proof.
intros * Q1 Q2 HQ. iIntros "wp".
iApply (default_initialize_array_frame with "[] wp"); [done|].
iIntros (free) "Q". by iApply HQ.
Qed.
#[global] Instance default_initialize_array_flip_mono : ARRAY (flip bi_entails).
Proof. repeat intro. by apply default_initialize_array_mono. Qed.
#[global] Instance default_initialize_array_proper : ARRAY equiv.
Proof. intros * Q1 Q2 HQ. by split'; apply default_initialize_array_mono=>free; rewrite HQ. Qed.
Lemma default_initialize_array_intro tu ty sz (p : ptr) Q :
Cbn (Reduce (default_initialize_array_body false) (default_initialize tu ty) tu ty sz p Q)
|-- default_initialize_array (default_initialize tu ty) tu ty sz p Q.
Proof.
rewrite default_initialize_array.unlock.
induction (seqN 0 sz) as [|???IH]; cbn.
{ by rewrite -fupd_intro. }
iIntros "wp". iApply (default_initialize_frame with "[] wp"); [done|].
iIntros (?) "wp". iApply (interp_frame with "[] wp").
iIntros "wp". iApply (IH with "wp").
Qed.
Lemma default_initialize_array_elim tu ty sz (p : ptr) Q :
default_initialize_array (default_initialize tu ty) tu ty sz p Q
|-- Cbn (Reduce (default_initialize_array_body true) (default_initialize tu ty) tu ty sz p Q).
Proof. by rewrite default_initialize_array.unlock. Qed.
Lemma default_initialize_intro tu ty (p : ptr) Q :
Cbn (Reduce (default_initialize_body false) (default_initialize tu) tu ty p Q)
|-- default_initialize tu ty p Q.
Proof.
rewrite (default_initialize_unfold ty). induction ty; first
[ by auto using fupd_intro
| by iIntros "HQ R"; iApply ("HQ" with "R")
| idtac ].
{ (* qualifiers *)
destruct (q_volatile q); auto using fupd_intro.
destruct (q_const q); auto using fupd_intro. }
Qed.
Lemma default_initialize_elim tu ty (p : ptr) Q :
default_initialize tu ty p Q
|-- Cbn (Reduce (default_initialize_body true) (default_initialize tu) tu ty p Q).
Proof. rewrite default_initialize.unlock. by destruct ty. Qed.
End default_initialize.
(* error used when using e to initialize a value of type ty. *)
Variant initializing_type (ty : type) (e : Expr) : Prop := ANY.
wp_initialize provides "constructor" semantics for types. For
aggregates, simply delegates to wp_init, but for primitives, the
semantics is to evaluate the primitive and initialize the location
with the value.
NOTE this assumes that the memory is coming from the C++ abstract
machine.
NOTE wp_initialize is very similar to wp_init except that
wp_initialize can be used to initialize all values (including
references) whereas wp_init is only safe to initialize
non-primitives (arrays and aggregates).
TODO (FM-3939): We disable compatibility with fancy updates for
wp_initialize. The presense of such updates interferes with
"learning" after wp_initialize; for example, we can learn equality
under a wand and an existential quantifier:
∀ {A} (Vinj : A -> val) `{!Inj (=) (=) Vinj} (p : ptr) ty q (x1 : A) (Q : A -> mpred), p |-> tptstoR ty q (Vinj x1) -* (Exists x2, p |-> tptstoR ty q (Vinj x2) ** Q x2) |-- p |-> tptstoR ty q (Vinj x1) -* p |-> tptstoR ty q (Vinj x1) ** Q x1.but such a rule would fail with .. -* |={top}=> .. in place of the magic wands.
#[local] Notation fupd_compatible := false (only parsing).
(* BEGIN wp_initialize *)
#[local] Definition wp_initialize_unqualified_body `{Σ : cpp_logic, σ : genv}
(u : bool) (tu : translation_unit) (ρ : region)
(cv : type_qualifiers) (ty : decltype)
(addr : ptr) (init : Expr) (Q : FreeTemps -> epred) : mpred :=
let UNSUPPORTED := funI m => |={top}=>?u UNSUPPORTED m in
if q_volatile cv then False%I
else
match ty with
| Tvoid =>
(*
wp_initialize is used to `return` from a function. The following
is legal in C++:
<<
void f();
void g() { return f(); }
>>
*)
letI* v, frees := wp_operand tu ρ init in
let qf := cQp.mk (q_const cv) 1 in
[| v = Vvoid |] **
(* BEGIN wp_initialize *)
#[local] Definition wp_initialize_unqualified_body `{Σ : cpp_logic, σ : genv}
(u : bool) (tu : translation_unit) (ρ : region)
(cv : type_qualifiers) (ty : decltype)
(addr : ptr) (init : Expr) (Q : FreeTemps -> epred) : mpred :=
let UNSUPPORTED := funI m => |={top}=>?u UNSUPPORTED m in
if q_volatile cv then False%I
else
match ty with
| Tvoid =>
(*
wp_initialize is used to `return` from a function. The following
is legal in C++:
<<
void f();
void g() { return f(); }
>>
*)
letI* v, frees := wp_operand tu ρ init in
let qf := cQp.mk (q_const cv) 1 in
[| v = Vvoid |] **
primR is enough because C++ code never uses the raw bytes
underlying an inhabitant of type void.
(addr |-> primR Tvoid qf Vvoid -* |={top}=>?u Q frees)
| Tptr _
| Tmember_pointer _ _
| Tbool
| Tnum _ _
| Tchar_ _
| Tenum _
| Tfloat_ _
| Tnullptr =>
letI* v, free := wp_operand tu ρ init in
let qf := cQp.mk (q_const cv) 1 in
addr |-> tptsto_fuzzyR (erase_qualifiers ty) qf v -* |={top}=>?u Q free
(* non-primitives are handled via prvalue-initialization semantics *)
| Tarray _ _
| Tnamed _ => wp_init tu ρ (tqualified cv ty) addr init Q
| Tincomplete_array _ => UNSUPPORTED (initializing_type ty init)
| Tvariable_array _ _ => UNSUPPORTED (initializing_type ty init)
| Tref ty =>
let rty := Tref $ erase_qualifiers ty in
letI* p, free := wp_glval tu ρ init in (* TODO this needs to permit initialization from xval if ty is <<const>> *)
let qf := cQp.mk (q_const cv) 1 in
(*
primR is enough because C++ code never uses the raw bytes
underlying an inhabitant of a reference type.
TODO: refs are never mutable, but we use qf here for
compatibility with implicit_destruct_struct
*)
addr |-> primR rty qf (Vref p) -* |={top}=>?u Q free
| Trv_ref ty =>
let rty := Tref $ erase_qualifiers ty in
letI* p, free := wp_xval tu ρ init in
let qf := cQp.mk (q_const cv) 1 in
(*
primR is enough because C++ code never uses the raw bytes
underlying an inhabitant of a reference type.
TODO: refs are never mutable, but we use qf here for
compatibility with implicit_destruct_struct
*)
addr |-> primR rty qf (Vref p) -* |={top}=>?u Q free
| Tfunction _ => UNSUPPORTED (initializing_type ty init)
| Tqualified _ ty => |={top}=>?u False (* unreachable *)
| Tarch _ _ => UNSUPPORTED (initializing_type ty init)
| Tunsupported _ => UNSUPPORTED (initializing_type ty init)
| Tdecltype _ => UNSUPPORTED (initializing_type ty init)
| Texprtype _ => UNSUPPORTED (initializing_type ty init)
| Tparam _ | Tresult_param _ | Tresult_global _
| Tresult_unop _ _ | Tresult_binop _ _ _
| Tresult_call _ _ | Tresult_member_call _ _ _
| Tresult_member _ _ | Tresult_parenlist _ _ => UNSUPPORTED (initializing_type ty init)
end%I.
mlock
Definition wp_initialize_unqualified `{Σ : cpp_logic, σ : genv} :
∀ (tu : translation_unit) (ρ : region)
(cv : type_qualifiers) (ty : decltype)
(addr : ptr) (init : Expr) (Q : FreeTemps -> epred), mpred :=
Cbn (Reduce (wp_initialize_unqualified_body fupd_compatible)).
#[global] Arguments wp_initialize_unqualified {_ _ _ _} _ _ _ _ _ _ _%_I : assert. (* mlock bug *)
Definition wp_initialize `{Σ : cpp_logic, σ : genv} (tu : translation_unit) (ρ : region)
(qty : decltype) (addr : ptr) (init : Expr) (Q : FreeTemps -> epred) : mpred :=
qual_norm (wp_initialize_unqualified tu ρ) qty addr init Q.
#[global] Hint Opaque wp_initialize : typeclass_instances.
#[global] Arguments wp_initialize {_ _ _ _} _ _ !_ _ _ _ / : assert.
(* END wp_initialize *)
Definition heap_type_of (t : type) : type :=
match erase_qualifiers t with
| Trv_ref ty => Tref ty
| t => t
end.
Lemma wp_initialize_unqualified_well_typed `{Σ : cpp_logic, σ : genv}
tu ρ cv ty addr init (Q : FreeTemps.t -> epred) :
wp_initialize_unqualified tu ρ cv ty addr init (fun free => reference_to (heap_type_of ty) addr -* Q free)
|-- wp_initialize_unqualified tu ρ cv ty addr init Q.
Proof.
rewrite wp_initialize_unqualified.unlock.
case_match; eauto.
case_match; subst; eauto.
all: try (iApply wp_operand_frame; [ done | ];
iIntros (??) "X Y";
iDestruct (observe (reference_to _ _) with "Y") as "#?";
iApply ("X" with "Y");
rewrite -reference_to_erase; done).
- iApply wp_glval_frame; [ done | ];
iIntros (??) "X Y";
iDestruct (observe (reference_to _ _) with "Y") as "#?".
iApply ("X" with "Y"). rewrite /heap_type_of/=. done.
- iApply wp_xval_frame; [ done | ];
iIntros (??) "X Y";
iDestruct (observe (reference_to _ _) with "Y") as "#?";
iApply ("X" with "Y").
rewrite /heap_type_of/=. done.
- iApply wp_operand_frame; [ done | ].
iIntros (??) "[$ X] Y".
iDestruct (observe (reference_to _ _) with "Y") as "#?";
iApply ("X" with "Y"); eauto.
- etransitivity; [ | apply wp_init_well_typed ].
iApply wp_init_frame; [ done | ].
iIntros (?) "X Y". iApply "X".
rewrite /heap_type_of/=.
rewrite reference_to_erase/=/tqualified'.
destruct cv; simpl; eauto.
- etransitivity; [ | apply wp_init_well_typed ].
iApply wp_init_frame; [ done | ].
iIntros (?) "X Y". iApply "X".
rewrite (reference_to_erase (Tnamed gn)).
rewrite reference_to_erase/=/tqualified'.
destruct cv; simpl; eauto.
Qed.
| Tptr _
| Tmember_pointer _ _
| Tbool
| Tnum _ _
| Tchar_ _
| Tenum _
| Tfloat_ _
| Tnullptr =>
letI* v, free := wp_operand tu ρ init in
let qf := cQp.mk (q_const cv) 1 in
addr |-> tptsto_fuzzyR (erase_qualifiers ty) qf v -* |={top}=>?u Q free
(* non-primitives are handled via prvalue-initialization semantics *)
| Tarray _ _
| Tnamed _ => wp_init tu ρ (tqualified cv ty) addr init Q
| Tincomplete_array _ => UNSUPPORTED (initializing_type ty init)
| Tvariable_array _ _ => UNSUPPORTED (initializing_type ty init)
| Tref ty =>
let rty := Tref $ erase_qualifiers ty in
letI* p, free := wp_glval tu ρ init in (* TODO this needs to permit initialization from xval if ty is <<const>> *)
let qf := cQp.mk (q_const cv) 1 in
(*
primR is enough because C++ code never uses the raw bytes
underlying an inhabitant of a reference type.
TODO: refs are never mutable, but we use qf here for
compatibility with implicit_destruct_struct
*)
addr |-> primR rty qf (Vref p) -* |={top}=>?u Q free
| Trv_ref ty =>
let rty := Tref $ erase_qualifiers ty in
letI* p, free := wp_xval tu ρ init in
let qf := cQp.mk (q_const cv) 1 in
(*
primR is enough because C++ code never uses the raw bytes
underlying an inhabitant of a reference type.
TODO: refs are never mutable, but we use qf here for
compatibility with implicit_destruct_struct
*)
addr |-> primR rty qf (Vref p) -* |={top}=>?u Q free
| Tfunction _ => UNSUPPORTED (initializing_type ty init)
| Tqualified _ ty => |={top}=>?u False (* unreachable *)
| Tarch _ _ => UNSUPPORTED (initializing_type ty init)
| Tunsupported _ => UNSUPPORTED (initializing_type ty init)
| Tdecltype _ => UNSUPPORTED (initializing_type ty init)
| Texprtype _ => UNSUPPORTED (initializing_type ty init)
| Tparam _ | Tresult_param _ | Tresult_global _
| Tresult_unop _ _ | Tresult_binop _ _ _
| Tresult_call _ _ | Tresult_member_call _ _ _
| Tresult_member _ _ | Tresult_parenlist _ _ => UNSUPPORTED (initializing_type ty init)
end%I.
mlock
Definition wp_initialize_unqualified `{Σ : cpp_logic, σ : genv} :
∀ (tu : translation_unit) (ρ : region)
(cv : type_qualifiers) (ty : decltype)
(addr : ptr) (init : Expr) (Q : FreeTemps -> epred), mpred :=
Cbn (Reduce (wp_initialize_unqualified_body fupd_compatible)).
#[global] Arguments wp_initialize_unqualified {_ _ _ _} _ _ _ _ _ _ _%_I : assert. (* mlock bug *)
Definition wp_initialize `{Σ : cpp_logic, σ : genv} (tu : translation_unit) (ρ : region)
(qty : decltype) (addr : ptr) (init : Expr) (Q : FreeTemps -> epred) : mpred :=
qual_norm (wp_initialize_unqualified tu ρ) qty addr init Q.
#[global] Hint Opaque wp_initialize : typeclass_instances.
#[global] Arguments wp_initialize {_ _ _ _} _ _ !_ _ _ _ / : assert.
(* END wp_initialize *)
Definition heap_type_of (t : type) : type :=
match erase_qualifiers t with
| Trv_ref ty => Tref ty
| t => t
end.
Lemma wp_initialize_unqualified_well_typed `{Σ : cpp_logic, σ : genv}
tu ρ cv ty addr init (Q : FreeTemps.t -> epred) :
wp_initialize_unqualified tu ρ cv ty addr init (fun free => reference_to (heap_type_of ty) addr -* Q free)
|-- wp_initialize_unqualified tu ρ cv ty addr init Q.
Proof.
rewrite wp_initialize_unqualified.unlock.
case_match; eauto.
case_match; subst; eauto.
all: try (iApply wp_operand_frame; [ done | ];
iIntros (??) "X Y";
iDestruct (observe (reference_to _ _) with "Y") as "#?";
iApply ("X" with "Y");
rewrite -reference_to_erase; done).
- iApply wp_glval_frame; [ done | ];
iIntros (??) "X Y";
iDestruct (observe (reference_to _ _) with "Y") as "#?".
iApply ("X" with "Y"). rewrite /heap_type_of/=. done.
- iApply wp_xval_frame; [ done | ];
iIntros (??) "X Y";
iDestruct (observe (reference_to _ _) with "Y") as "#?";
iApply ("X" with "Y").
rewrite /heap_type_of/=. done.
- iApply wp_operand_frame; [ done | ].
iIntros (??) "[$ X] Y".
iDestruct (observe (reference_to _ _) with "Y") as "#?";
iApply ("X" with "Y"); eauto.
- etransitivity; [ | apply wp_init_well_typed ].
iApply wp_init_frame; [ done | ].
iIntros (?) "X Y". iApply "X".
rewrite /heap_type_of/=.
rewrite reference_to_erase/=/tqualified'.
destruct cv; simpl; eauto.
- etransitivity; [ | apply wp_init_well_typed ].
iApply wp_init_frame; [ done | ].
iIntros (?) "X Y". iApply "X".
rewrite (reference_to_erase (Tnamed gn)).
rewrite reference_to_erase/=/tqualified'.
destruct cv; simpl; eauto.
Qed.
wpi cls this init Q evaluates the initializer init from the object
thisp (of type Tnamed cls) and then proceeds as Q.
NOTE that temporaries introduced by the evaluation of init are
cleaned up before Q is run (Q does not have a FreeTemps
argument). This is because initialization is considered a full
expression.
See https://eel.is/c++draft/class.init#class.base.init-note-2.
Definition wpi `{Σ : cpp_logic, σ : genv} (tu : translation_unit) (ρ : region)
(cls : globname) (thisp : ptr) (ty : type) (init : Initializer) (Q : epred) : mpred :=
let p' := thisp ,, offset_for cls init.(init_path) in
letI* free := wp_initialize tu ρ ty p' init.(init_init) in
letI* := interp tu free in
Q.
#[global] Hint Opaque wpi : typeclass_instances.
#[global] Arguments wpi {_ _ _ _} _ _ _ _ _ _ _ / : assert.
(*
All framing lemmas *should* work with genv weakening, but that
requires some additional side-conditions on paths that we can't prove
right now. So, for the time being, we prove _frame lemmas without
genv weakening.
*)
Section wp_initialize.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : FreeTemps -> epred).
(cls : globname) (thisp : ptr) (ty : type) (init : Initializer) (Q : epred) : mpred :=
let p' := thisp ,, offset_for cls init.(init_path) in
letI* free := wp_initialize tu ρ ty p' init.(init_init) in
letI* := interp tu free in
Q.
#[global] Hint Opaque wpi : typeclass_instances.
#[global] Arguments wpi {_ _ _ _} _ _ _ _ _ _ _ / : assert.
(*
All framing lemmas *should* work with genv weakening, but that
requires some additional side-conditions on paths that we can't prove
right now. So, for the time being, we prove _frame lemmas without
genv weakening.
*)
Section wp_initialize.
Context `{Σ : cpp_logic, σ : genv}.
Implicit Types (Q : FreeTemps -> epred).
Lemma wp_initialize_unqualified_intro tu ρ cv ty obj e Q :
Cbn (Reduce wp_initialize_unqualified_body false) tu ρ cv ty obj e Q
|-- wp_initialize_unqualified tu ρ cv ty obj e Q.
Proof.
rewrite wp_initialize_unqualified.unlock. destruct ty; auto.
all:
repeat case_match;
lazymatch goal with
| |- context [wp_operand] => iApply wp_operand_frame; [done|]
| |- context [wp_lval] => iApply wp_lval_frame; [done|]
| |- context [wp_xval] => iApply wp_xval_frame; [done|]
| |- context [wp_init] => iApply wp_init_frame; [done|]
| _ => idtac
end.
(* Relevant to fupd_compatible = true
all: first
iIntros (??) "HQ R"; iApply ("HQ" with "R") | iIntros (??) "[$ HQ] R"; iApply ("HQ" with "R") | idtac .
*)
Qed.
Lemma wp_initialize_unqualified_elim tu ρ cv ty obj e Q :
wp_initialize_unqualified tu ρ cv ty obj e Q
|-- Cbn (Reduce wp_initialize_unqualified_body fupd_compatible) tu ρ cv ty obj e Q.
Proof. by rewrite wp_initialize_unqualified.unlock. Qed.
For value types, wp_initialize -|- wp_operand.
Compared to unfolding, these _val lemmas treat value types
uniformly.
can_init ty e is a side-condition for introducing wp_initialize
with value type ty and expression e, serving the conjunct v =
Vvoid in wp_initialize_unqualified's Tvoid case.
Definition can_init (ty : type) (e : Expr) : bool :=
bool_decide (ty = Tvoid) ==>
bool_decide (type_of e = Tvoid).
Lemma can_init_void e : can_init Tvoid e -> type_of e = Tvoid.
Proof.
move/implyP. rewrite bool_decide_true//.
by move/(_ I)/bool_decide_unpack.
Qed.
#[local] Notation VAL_INIT u tu ρ cv ty addr init Q := (Cbn (
let cv' := cv in (* to establish scopes *)
if q_volatile cv' then False
else
letI* v, free := wp_operand tu ρ init in
let qf := cQp.mk (q_const cv') 1 in
addr |-> tptsto_fuzzyR (erase_qualifiers ty) qf v -* |={top}=>?u Q free
)%I) (only parsing).
Lemma wp_initialize_unqualified_intro_val tu ρ cv ty (addr : ptr) init Q :
can_init ty init ->
~~ is_qualified ty -> is_value_type ty ->
VAL_INIT false tu ρ cv ty addr init Q
|-- wp_initialize_unqualified tu ρ cv ty addr init Q.
Proof.
intros Hty ??. rewrite -wp_initialize_unqualified_intro.
case_match; eauto.
destruct ty; try solve [ inversion H0 | eauto ].
(* void *)
iIntros "wp /=".
iApply wp_operand_well_typed.
iApply (wp_operand_wand with "wp"). iIntros (v f).
rewrite can_init_void// has_type_void. iIntros "HQ ->".
rewrite tptsto_fuzzyR_Vvoid_primR. by iFrame "HQ".
Qed.
Lemma wp_initialize_unqualified_elim_val tu ρ cv ty addr init Q :
~~ is_qualified ty -> is_value_type ty ->
wp_initialize_unqualified tu ρ cv ty addr init Q
|-- VAL_INIT fupd_compatible tu ρ cv ty addr init Q.
Proof.
intros. rewrite wp_initialize_unqualified_elim.
case_match; eauto. destruct ty; try done.
(* void *)
iIntros "wp".
iApply (wp_operand_wand with "wp"). iIntros (v f) "(-> & HQ) R".
iApply ("HQ" with "[R]"). cbn. by rewrite tptsto_fuzzyR_Vvoid_primR.
Qed.
bool_decide (ty = Tvoid) ==>
bool_decide (type_of e = Tvoid).
Lemma can_init_void e : can_init Tvoid e -> type_of e = Tvoid.
Proof.
move/implyP. rewrite bool_decide_true//.
by move/(_ I)/bool_decide_unpack.
Qed.
#[local] Notation VAL_INIT u tu ρ cv ty addr init Q := (Cbn (
let cv' := cv in (* to establish scopes *)
if q_volatile cv' then False
else
letI* v, free := wp_operand tu ρ init in
let qf := cQp.mk (q_const cv') 1 in
addr |-> tptsto_fuzzyR (erase_qualifiers ty) qf v -* |={top}=>?u Q free
)%I) (only parsing).
Lemma wp_initialize_unqualified_intro_val tu ρ cv ty (addr : ptr) init Q :
can_init ty init ->
~~ is_qualified ty -> is_value_type ty ->
VAL_INIT false tu ρ cv ty addr init Q
|-- wp_initialize_unqualified tu ρ cv ty addr init Q.
Proof.
intros Hty ??. rewrite -wp_initialize_unqualified_intro.
case_match; eauto.
destruct ty; try solve [ inversion H0 | eauto ].
(* void *)
iIntros "wp /=".
iApply wp_operand_well_typed.
iApply (wp_operand_wand with "wp"). iIntros (v f).
rewrite can_init_void// has_type_void. iIntros "HQ ->".
rewrite tptsto_fuzzyR_Vvoid_primR. by iFrame "HQ".
Qed.
Lemma wp_initialize_unqualified_elim_val tu ρ cv ty addr init Q :
~~ is_qualified ty -> is_value_type ty ->
wp_initialize_unqualified tu ρ cv ty addr init Q
|-- VAL_INIT fupd_compatible tu ρ cv ty addr init Q.
Proof.
intros. rewrite wp_initialize_unqualified_elim.
case_match; eauto. destruct ty; try done.
(* void *)
iIntros "wp".
iApply (wp_operand_wand with "wp"). iIntros (v f) "(-> & HQ) R".
iApply ("HQ" with "[R]"). cbn. by rewrite tptsto_fuzzyR_Vvoid_primR.
Qed.
Lemma wp_initialize_unqualified_elim_aggregate tu ρ cv ty qty addr init Q :
qty ≡ Tqualified cv ty -> is_aggregate_type ty ->
wp_initialize_unqualified tu ρ cv ty addr init Q |-- wp_init tu ρ qty addr init Q.
Proof.
intros Heq ?. rewrite wp_initialize_unqualified_elim.
case_match; [ iIntros "[]" | ]; destruct ty; first
[ by rewrite ?(UNSUPPORTED_elim, bi.False_elim)
| idtac ].
all: try by rewrite tqualified_equiv Heq.
(* Relevant to fupd_compatible = true in wp_initialize
(** Absurd cases *)
all: rewrite -fupd_wp_init; iMod 1; iExFalso; by rewrite ?UNSUPPORTED_elim.
*)
Qed.
Lemma wp_initialize_unqualified_intro_aggregate tu ρ cv ty qty addr init Q :
qty ≡ Tqualified cv ty -> ~~ is_qualified ty -> is_aggregate_type ty ->
(if q_volatile cv then False else wp_init tu ρ qty addr init Q)
|-- wp_initialize_unqualified tu ρ cv ty addr init Q.
Proof.
intros Heq ??. rewrite -wp_initialize_unqualified_intro.
case_match; [ iIntros "[]" | ].
destruct ty; try done.
all: by rewrite tqualified_equiv Heq.
Qed.
Properties
Lemma wp_initialize_unqualified_frame tu tu' ρ obj cv ty e Q Q' :
sub_module tu tu' ->
(Forall free, Q free -* Q' free)
|-- wp_initialize_unqualified tu ρ cv ty obj e Q -* wp_initialize_unqualified tu' ρ cv ty obj e Q'.
Proof.
intros. iIntros "HQ'". destruct ty; rewrite unlock; auto.
all: case_match; eauto.
all:
repeat case_match;
lazymatch goal with
| |- context [wp_operand] => iApply wp_operand_frame; [done|]
| |- context [wp_lval] => iApply wp_lval_frame; [done|]
| |- context [wp_glval] => iApply wp_glval_frame; [done|]
| |- context [wp_xval] => iApply wp_xval_frame; [done|]
| |- context [wp_init] => iApply wp_init_frame; [done|]
| _ => idtac
end;
first
[ by iIntros (??) "HQ ?"; iApply "HQ'"; iApply "HQ"
| by iIntros (?) "?"; iApply "HQ'"
| idtac ].
(* void *)
iIntros (??) "($ & HQ) ?". iApply "HQ'". by iApply "HQ".
Qed.
Lemma wp_initialize_unqualified_shift tu ρ cv ty obj e Q :
Cbn (|={top}=>?fupd_compatible wp_initialize_unqualified tu ρ cv ty obj e (fun free => |={top}=>?fupd_compatible Q free))
|-- wp_initialize_unqualified tu ρ cv ty obj e Q.
Proof.
destruct ty; rewrite unlock; auto using fupd_elim, fupd_intro.
(* Relevant to fupd_compatible = true
all: iIntros "wp".
all: lazymatch goal with
| |- context wp_operand => iApply wp_operand_shift; iApply (wp_operand_frame with " wp"); done|
| |- context wp_lval => iApply wp_lval_shift; iApply (wp_lval_frame with " wp"); done|
| |- context wp_xval => iApply wp_xval_shift; iApply (wp_xval_frame with " wp"); done|
| |- context wp_init => iApply wp_init_shift; iMod "wp"; by iModIntro
| _ => idtac
end.
all: try by iIntros (??) "HQ !> R"; iMod ("HQ" with "R").
(* void *)
iIntros (??) "(*)
Qed.
#[global] Instance: Params (@wp_initialize_unqualified) 10 := {}.
#[local] Notation BODY R := (
∀ tu ρ cv ty obj init,
Proper (pointwise_relation _ R ==> R) (wp_initialize_unqualified tu ρ cv ty obj init)
) (only parsing).
#[global] Instance wp_initialize_unqualified_mono : BODY bi_entails.
Proof.
intros * Q1 Q2 HQ. iIntros "wp".
iApply (wp_initialize_unqualified_frame with "[] wp"); [done|]. iIntros (free) "Q".
by iApply HQ.
Qed.
#[global] Instance wp_initialize_unqualified_flip_mono : BODY (flip bi_entails).
Proof. repeat intro. by apply wp_initialize_unqualified_mono. Qed.
#[global] Instance wp_initialize_unqualified_proper : BODY equiv.
Proof. intros * Q1 Q2 HQ. by split'; apply wp_initialize_unqualified_mono=>free; rewrite HQ. Qed.
Lemma wp_initialize_ok tu ρ qty :
qual_norm_spec (wp_initialize_unqualified tu ρ) QM qty (wp_initialize tu ρ qty).
Proof. apply qual_norm_ok. Qed.
Lemma wp_initialize_qual_norm tu ρ qty :
wp_initialize tu ρ qty = qual_norm (wp_initialize_unqualified tu ρ) qty.
Proof. done. Qed.
Lemma wp_initialize_decompose_type tu ρ qty :
wp_initialize tu ρ qty =
let p := decompose_type qty in
wp_initialize_unqualified tu ρ p.1 p.2.
Proof.
by rewrite wp_initialize_qual_norm qual_norm_decompose_type.
Qed.
Lemma wp_initialize_intro tu ρ ty addr init Q :
qual_norm (fun cv rty => Cbn (Reduce wp_initialize_unqualified_body false) tu ρ cv rty addr init Q) ty
|-- wp_initialize tu ρ ty addr init Q.
Proof.
rewrite qual_norm_decompose_type wp_initialize_decompose_type.
apply wp_initialize_unqualified_intro.
Qed.
Lemma wp_initialize_elim tu ρ ty addr init Q :
wp_initialize tu ρ ty addr init Q
|-- qual_norm (fun cv rty => Cbn (Reduce wp_initialize_unqualified_body fupd_compatible) tu ρ cv rty addr init Q) ty.
Proof.
rewrite wp_initialize_decompose_type qual_norm_decompose_type.
apply wp_initialize_unqualified_elim.
Qed.
Compared to unfolding, these _val lemmas treat value types
uniformly.
Lemma wp_initialize_intro_val tu ρ ty (addr : ptr) init Q :
can_init (drop_qualifiers ty) init -> is_value_type ty ->
VAL_INIT false tu ρ (qual_norm (fun cv _ => cv) ty) ty addr init Q
|-- wp_initialize tu ρ ty addr init Q.
Proof.
rewrite drop_qualifiers_decompose_type.
rewrite is_value_type_decompose_type wp_initialize_decompose_type.
rewrite qual_norm_decompose_type erase_qualifiers_decompose_type.
have := is_qualified_decompose_type (type_of init). cbn. intros.
by rewrite -wp_initialize_unqualified_intro_val.
Qed.
Lemma wp_initialize_elim_val tu ρ ty addr init Q :
is_value_type ty ->
wp_initialize tu ρ ty addr init Q
|-- VAL_INIT fupd_compatible tu ρ (qual_norm (fun cv _ => cv) ty) ty addr init Q.
Proof.
rewrite is_value_type_decompose_type wp_initialize_decompose_type.
rewrite qual_norm_decompose_type erase_qualifiers_decompose_type.
have := is_qualified_decompose_type ty.
apply wp_initialize_unqualified_elim_val.
Qed.
Lemma wp_initialize_elim_aggregate tu ρ ty addr init Q :
is_aggregate_type ty ->
wp_initialize tu ρ ty addr init Q |-- wp_init tu ρ ty addr init Q.
Proof.
rewrite is_aggregate_type_decompose_type wp_initialize_decompose_type.
apply wp_initialize_unqualified_elim_aggregate.
by rewrite decompose_type_equiv.
Qed.
Lemma wp_initialize_intro_aggregate tu ρ ty addr init Q :
is_aggregate_type ty ->
TCEq (is_volatile ty) false ->
wp_init tu ρ ty addr init Q |-- wp_initialize tu ρ ty addr init Q.
Proof.
rewrite is_aggregate_type_decompose_type wp_initialize_decompose_type.
rewrite /decompose_type. intros.
rewrite -wp_initialize_unqualified_intro_aggregate; [| | eauto | eauto ].
{ have->: q_volatile (qual_norm (fun cv t => (cv,t)) ty).1 = false.
{ rewrite 2!qual_norm_map. simpl. inversion H0. done. }
reflexivity. }
by rewrite decompose_type_equiv.
(* Qed. *) Admitted. (* TODO *)
Lemma wp_initialize_frame tu tu' ρ obj ty e Q Q' :
sub_module tu tu' ->
(Forall free, Q free -* Q' free)
|-- wp_initialize tu ρ ty obj e Q -* wp_initialize tu' ρ ty obj e Q'.
Proof.
intros. rewrite /wp_initialize/qual_norm.
induction (wp_initialize_ok tu ρ ty); last done.
rewrite !qual_norm'_unqual//. exact: wp_initialize_unqualified_frame.
Qed.
Lemma wp_initialize_shift tu ρ ty obj e Q :
Cbn (|={top}=>?fupd_compatible wp_initialize tu ρ ty obj e (fun free => |={top}=>?fupd_compatible Q free))
|-- wp_initialize tu ρ ty obj e Q.
Proof.
rewrite /wp_initialize/qual_norm.
induction (wp_initialize_ok tu ρ ty); last done.
rewrite !qual_norm'_unqual//.
(* Relevant to fupd_compatible = true
apply wp_initialize_unqualified_shift.
*)
Qed.
#[global] Instance: Params (@wp_initialize) 9 := {}.
#[local] Notation INIT R := (
∀ tu ρ ty obj init,
Proper (pointwise_relation _ R ==> R) (wp_initialize tu ρ ty obj init)
) (only parsing).
#[global] Instance wp_initialize_mono : INIT bi_entails.
Proof.
intros * Q1 Q2 HQ. iIntros "wp".
iApply (wp_initialize_frame with "[] wp"); [done|]. iIntros (free) "Q".
by iApply HQ.
Qed.
#[global] Instance wp_initialize_flip_mono : INIT (flip bi_entails).
Proof. repeat intro. by apply wp_initialize_mono. Qed.
#[global] Instance wp_initialize_proper : INIT equiv.
Proof. intros * Q1 Q2 HQ. by split'; apply wp_initialize_mono=>free; rewrite HQ. Qed.
Lemma wp_initialize_wand tu ρ obj ty e Q Q' :
wp_initialize tu ρ ty obj e Q
|-- (Forall free, Q free -* Q' free) -* wp_initialize tu ρ ty obj e Q'.
Proof. by iIntros "H Y"; iRevert "H"; iApply wp_initialize_frame. Qed.
Inductive wp_initialize_decomp_spec tu ρ ty (addr : ptr) init Q : mpred -> Prop :=
| WpInitVolatile cv ty' : (cv, ty') = decompose_type ty ->
q_volatile cv ->
wp_initialize_decomp_spec tu ρ ty addr init Q False
| WpInitScalar cv ty' : scalar_type ty' ->
(cv, ty') = decompose_type ty ->
~~q_volatile cv ->
wp_initialize_decomp_spec tu ρ ty addr init Q (
letI* v, free := wp_operand tu ρ init in
let qf := cQp.mk (q_const cv) 1 in
addr |-> tptsto_fuzzyR (erase_qualifiers ty) qf v -* Q free
)
| WpInitRef cv ty' : drop_qualifiers ty = Tref ty' ->
wp_initialize_decomp_spec tu ρ ty addr init Q (
let rty := Tref $ erase_qualifiers ty' in
letI* p, free := wp_lval tu ρ init in
let qf := cQp.mk (q_const cv) 1 in
addr |-> primR rty qf (Vref p) -* Q free
)
| WpInitRvRef cv ty' : drop_qualifiers ty = Trv_ref ty' ->
wp_initialize_decomp_spec tu ρ ty addr init Q (
let rty := Tref $ erase_qualifiers ty' in
letI* p, free := wp_xval tu ρ init in
let qf := cQp.mk (q_const cv) 1 in
addr |-> primR rty qf (Vref p) -* Q free
)
| WpInitVoid cv : decompose_type ty = (cv, Tvoid) ->
~~q_volatile cv ->
wp_initialize_decomp_spec tu ρ ty addr init Q (
letI* v, frees := wp_operand tu ρ init in
let qf := cQp.mk (q_const cv) 1 in
[| v = Vvoid |] **
(addr |-> primR Tvoid qf Vvoid -* Q frees)
)
| WpInitAggreg cv ty' : is_aggregate_type ty' ->
(cv, ty') = decompose_type ty ->
~~q_volatile cv ->
wp_initialize_decomp_spec tu ρ ty addr init Q (
wp_init tu ρ (tqualified cv ty') addr init Q
)
| WpInitFuncArch cv ty' : match ty' with
| Tfunction _
| Tarch _ _
| Tincomplete_array _
| Tvariable_array _ _ => true
| _ => false
end ->
(cv, ty') = decompose_type ty ->
~~q_volatile cv ->
wp_initialize_decomp_spec tu ρ ty addr init Q (
UNSUPPORTED (initializing_type ty' init)
)
| WpInitUnsupported cv msg : decompose_type ty = (cv, Tunsupported msg) ->
wp_initialize_decomp_spec tu ρ ty addr init Q False
.
Lemma wp_initialize_decomp_ok tu ρ ty addr e Q :
wp_initialize_decomp_spec tu ρ ty addr e Q (wp_initialize tu ρ ty addr e Q).
Proof.
rewrite wp_initialize_qual_norm wp_initialize_unqualified.unlock.
case: qual_norm_decomp_ok=>q t.
case Ht: t.
all: case_match; try solve [ intros; econstructor; eauto ].
all: try (rewrite [decompose_type _]surjective_pairing=>[][Hq Hty];
rewrite Hty -erase_qualifiers_decompose_type;
econstructor; [ | rewrite [decompose_type _]surjective_pairing -Hq -Hty // | rewrite H ]; eauto).
(* all: try by rewrite decompose_type _surjective_pairing=>Hq Hty;
rewrite Hty -erase_qualifiers_decompose_type;
econstructor; last rewrite decompose_type _surjective_pairing -Hq -Hty //. *)
all: try by rewrite [decompose_type _]surjective_pairing=>[][Hq Hty];
econstructor;
rewrite Hty; apply: drop_qualifiers_decompose_type.
all: try by rewrite [decompose_type _]surjective_pairing=>[][Hq Hty]; econstructor;
try solve [ done | rewrite //= [decompose_type _]surjective_pairing -Hq -Hty // | rewrite H // ].
(*
{ (* Tqualified *)
rewrite decompose_type _surjective_pairing;
move: (is_qualified_decompose_type ty)=>/swap _ <-.
by simpl. }
{ (* Tunsupported *)
intros. rewrite UNSUPPORTED.unlock. exact: WpInitUnsupported. }
Qed. *) Admitted. (* TODO: this would be improved by eliminating these cases using dependency *)
can_init (drop_qualifiers ty) init -> is_value_type ty ->
VAL_INIT false tu ρ (qual_norm (fun cv _ => cv) ty) ty addr init Q
|-- wp_initialize tu ρ ty addr init Q.
Proof.
rewrite drop_qualifiers_decompose_type.
rewrite is_value_type_decompose_type wp_initialize_decompose_type.
rewrite qual_norm_decompose_type erase_qualifiers_decompose_type.
have := is_qualified_decompose_type (type_of init). cbn. intros.
by rewrite -wp_initialize_unqualified_intro_val.
Qed.
Lemma wp_initialize_elim_val tu ρ ty addr init Q :
is_value_type ty ->
wp_initialize tu ρ ty addr init Q
|-- VAL_INIT fupd_compatible tu ρ (qual_norm (fun cv _ => cv) ty) ty addr init Q.
Proof.
rewrite is_value_type_decompose_type wp_initialize_decompose_type.
rewrite qual_norm_decompose_type erase_qualifiers_decompose_type.
have := is_qualified_decompose_type ty.
apply wp_initialize_unqualified_elim_val.
Qed.
Lemma wp_initialize_elim_aggregate tu ρ ty addr init Q :
is_aggregate_type ty ->
wp_initialize tu ρ ty addr init Q |-- wp_init tu ρ ty addr init Q.
Proof.
rewrite is_aggregate_type_decompose_type wp_initialize_decompose_type.
apply wp_initialize_unqualified_elim_aggregate.
by rewrite decompose_type_equiv.
Qed.
Lemma wp_initialize_intro_aggregate tu ρ ty addr init Q :
is_aggregate_type ty ->
TCEq (is_volatile ty) false ->
wp_init tu ρ ty addr init Q |-- wp_initialize tu ρ ty addr init Q.
Proof.
rewrite is_aggregate_type_decompose_type wp_initialize_decompose_type.
rewrite /decompose_type. intros.
rewrite -wp_initialize_unqualified_intro_aggregate; [| | eauto | eauto ].
{ have->: q_volatile (qual_norm (fun cv t => (cv,t)) ty).1 = false.
{ rewrite 2!qual_norm_map. simpl. inversion H0. done. }
reflexivity. }
by rewrite decompose_type_equiv.
(* Qed. *) Admitted. (* TODO *)
Lemma wp_initialize_frame tu tu' ρ obj ty e Q Q' :
sub_module tu tu' ->
(Forall free, Q free -* Q' free)
|-- wp_initialize tu ρ ty obj e Q -* wp_initialize tu' ρ ty obj e Q'.
Proof.
intros. rewrite /wp_initialize/qual_norm.
induction (wp_initialize_ok tu ρ ty); last done.
rewrite !qual_norm'_unqual//. exact: wp_initialize_unqualified_frame.
Qed.
Lemma wp_initialize_shift tu ρ ty obj e Q :
Cbn (|={top}=>?fupd_compatible wp_initialize tu ρ ty obj e (fun free => |={top}=>?fupd_compatible Q free))
|-- wp_initialize tu ρ ty obj e Q.
Proof.
rewrite /wp_initialize/qual_norm.
induction (wp_initialize_ok tu ρ ty); last done.
rewrite !qual_norm'_unqual//.
(* Relevant to fupd_compatible = true
apply wp_initialize_unqualified_shift.
*)
Qed.
#[global] Instance: Params (@wp_initialize) 9 := {}.
#[local] Notation INIT R := (
∀ tu ρ ty obj init,
Proper (pointwise_relation _ R ==> R) (wp_initialize tu ρ ty obj init)
) (only parsing).
#[global] Instance wp_initialize_mono : INIT bi_entails.
Proof.
intros * Q1 Q2 HQ. iIntros "wp".
iApply (wp_initialize_frame with "[] wp"); [done|]. iIntros (free) "Q".
by iApply HQ.
Qed.
#[global] Instance wp_initialize_flip_mono : INIT (flip bi_entails).
Proof. repeat intro. by apply wp_initialize_mono. Qed.
#[global] Instance wp_initialize_proper : INIT equiv.
Proof. intros * Q1 Q2 HQ. by split'; apply wp_initialize_mono=>free; rewrite HQ. Qed.
Lemma wp_initialize_wand tu ρ obj ty e Q Q' :
wp_initialize tu ρ ty obj e Q
|-- (Forall free, Q free -* Q' free) -* wp_initialize tu ρ ty obj e Q'.
Proof. by iIntros "H Y"; iRevert "H"; iApply wp_initialize_frame. Qed.
Inductive wp_initialize_decomp_spec tu ρ ty (addr : ptr) init Q : mpred -> Prop :=
| WpInitVolatile cv ty' : (cv, ty') = decompose_type ty ->
q_volatile cv ->
wp_initialize_decomp_spec tu ρ ty addr init Q False
| WpInitScalar cv ty' : scalar_type ty' ->
(cv, ty') = decompose_type ty ->
~~q_volatile cv ->
wp_initialize_decomp_spec tu ρ ty addr init Q (
letI* v, free := wp_operand tu ρ init in
let qf := cQp.mk (q_const cv) 1 in
addr |-> tptsto_fuzzyR (erase_qualifiers ty) qf v -* Q free
)
| WpInitRef cv ty' : drop_qualifiers ty = Tref ty' ->
wp_initialize_decomp_spec tu ρ ty addr init Q (
let rty := Tref $ erase_qualifiers ty' in
letI* p, free := wp_lval tu ρ init in
let qf := cQp.mk (q_const cv) 1 in
addr |-> primR rty qf (Vref p) -* Q free
)
| WpInitRvRef cv ty' : drop_qualifiers ty = Trv_ref ty' ->
wp_initialize_decomp_spec tu ρ ty addr init Q (
let rty := Tref $ erase_qualifiers ty' in
letI* p, free := wp_xval tu ρ init in
let qf := cQp.mk (q_const cv) 1 in
addr |-> primR rty qf (Vref p) -* Q free
)
| WpInitVoid cv : decompose_type ty = (cv, Tvoid) ->
~~q_volatile cv ->
wp_initialize_decomp_spec tu ρ ty addr init Q (
letI* v, frees := wp_operand tu ρ init in
let qf := cQp.mk (q_const cv) 1 in
[| v = Vvoid |] **
(addr |-> primR Tvoid qf Vvoid -* Q frees)
)
| WpInitAggreg cv ty' : is_aggregate_type ty' ->
(cv, ty') = decompose_type ty ->
~~q_volatile cv ->
wp_initialize_decomp_spec tu ρ ty addr init Q (
wp_init tu ρ (tqualified cv ty') addr init Q
)
| WpInitFuncArch cv ty' : match ty' with
| Tfunction _
| Tarch _ _
| Tincomplete_array _
| Tvariable_array _ _ => true
| _ => false
end ->
(cv, ty') = decompose_type ty ->
~~q_volatile cv ->
wp_initialize_decomp_spec tu ρ ty addr init Q (
UNSUPPORTED (initializing_type ty' init)
)
| WpInitUnsupported cv msg : decompose_type ty = (cv, Tunsupported msg) ->
wp_initialize_decomp_spec tu ρ ty addr init Q False
.
Lemma wp_initialize_decomp_ok tu ρ ty addr e Q :
wp_initialize_decomp_spec tu ρ ty addr e Q (wp_initialize tu ρ ty addr e Q).
Proof.
rewrite wp_initialize_qual_norm wp_initialize_unqualified.unlock.
case: qual_norm_decomp_ok=>q t.
case Ht: t.
all: case_match; try solve [ intros; econstructor; eauto ].
all: try (rewrite [decompose_type _]surjective_pairing=>[][Hq Hty];
rewrite Hty -erase_qualifiers_decompose_type;
econstructor; [ | rewrite [decompose_type _]surjective_pairing -Hq -Hty // | rewrite H ]; eauto).
(* all: try by rewrite decompose_type _surjective_pairing=>Hq Hty;
rewrite Hty -erase_qualifiers_decompose_type;
econstructor; last rewrite decompose_type _surjective_pairing -Hq -Hty //. *)
all: try by rewrite [decompose_type _]surjective_pairing=>[][Hq Hty];
econstructor;
rewrite Hty; apply: drop_qualifiers_decompose_type.
all: try by rewrite [decompose_type _]surjective_pairing=>[][Hq Hty]; econstructor;
try solve [ done | rewrite //= [decompose_type _]surjective_pairing -Hq -Hty // | rewrite H // ].
(*
{ (* Tqualified *)
rewrite decompose_type _surjective_pairing;
move: (is_qualified_decompose_type ty)=>/swap _ <-.
by simpl. }
{ (* Tunsupported *)
intros. rewrite UNSUPPORTED.unlock. exact: WpInitUnsupported. }
Qed. *) Admitted. (* TODO: this would be improved by eliminating these cases using dependency *)
Lemma wpi_frame tu tu' ρ cls this ty e (Q Q' : epred) :
sub_module tu tu' ->
Q -* Q' |-- wpi tu ρ cls this ty e Q -* wpi tu' ρ cls this ty e Q'.
Proof.
intros. iIntros "HQ". rewrite /wpi.
iApply wp_initialize_frame; [done|]. iIntros (free).
by iApply interp_frame_strong.
Qed.
Lemma wpi_shift tu ρ cls this ty e (Q : epred) :
Cbn (|={top}=>?fupd_compatible wpi tu ρ cls this ty e (|={top}=>?fupd_compatible Q))
|-- wpi tu ρ cls this ty e Q.
Proof.
done.
(* Relevant to fupd_compatible = true
rewrite /wpi. iIntros "wp".
iApply wp_initialize_shift. iMod "wp".
iApply (wp_initialize_frame with " wp"); done|. iIntros (f) "wp !>".
by iApply interp_fupd.
*)
Qed.
#[global] Instance: Params (@wpi) 9 := {}.
#[local] Notation WPI R := (
∀ tu ρ cls this ty e,
Proper (R ==> R) (wpi tu ρ cls this ty e)
) (only parsing).
#[global] Instance wpi_mono : WPI bi_entails.
Proof.
intros * Q1 Q2 HQ. iIntros "wp".
iApply (wpi_frame with "[] wp"); [done|]. iIntros "Q".
by iApply HQ.
Qed.
#[global] Instance wpi_flip_mono : WPI (flip bi_entails).
Proof. repeat intro. by apply wpi_mono. Qed.
#[global] Instance wpi_proper : WPI equiv.
Proof. intros * Q1 Q2 HQ. by split'; apply wpi_mono; rewrite HQ. Qed.
End wp_initialize.