bedrock.lang.cpp.logic.lib.agree
Copyright (C) 2022 BedRock Systems, Inc.
All rights reserved.
*SPDX-License-Identifier: LGPL-2.1 WITH BedRock Exception for use over network, see repository root for details.
Require Import iris.algebra.agree.
Require Import bedrock.lang.bi.spec.knowledge.
Require Import bedrock.lang.cpp.logic.pred.
Require Import bedrock.lang.base_logic.own_instances.
Require Import bedrock.lang.proofmode.own_obs.
Set Printing Coercions.
CMRA
Parameter G : ∀ (A : Type) (Σ : gFunctors), Set.
Existing Class G.
Parameter Σ : ∀ (A : Type), gFunctors.
#[global] Declare Instance subG {A Σ} : subG (AGREE.Σ A) Σ -> G A Σ.
Ghosts
Parameter gname : ∀ (A : Type), Set.
#[global] Declare Instance gname_inhabited A : Inhabited (gname A).
#[global] Declare Instance gname_eq_dec A : EqDecision (gname A).
#[global] Declare Instance gname_countable A : Countable (gname A).
Predicates
Parameter own : ∀ {A} {thread_info : biIndex} {Σ} `{!AGREE.G A Σ}
(g : gname A) (x : A), mpred.
Section properties.
Context {A} {thread_info : biIndex} {Σ} `{!AGREE.G A Σ}.
Structure
#[global] Declare Instance own_objective : Objective2 own.
#[global] Declare Instance own_timeless : Timeless2 own.
#[global] Declare Instance own_knowledge : Knowledge2 own.
#[global] Declare Instance own_agree g : Agree1 (own g).
Allocation
Axiom alloc_strong_dep : ∀ (f : gname A -> A) (P : gname A -> Prop),
pred_infinite P ->
|-- |==> Exists g, [| P g |] ** own g (f g).
Axiom alloc_cofinite_dep : ∀ (f : gname A -> A) (G : gset (gname A)),
|-- |==> Exists g, [| g ∉ G |] ** own g (f g).
Axiom alloc_dep : ∀ (f : gname A -> A),
|-- |==> Exists g, own g (f g).
Axiom alloc_strong : ∀ (P : gname A -> Prop) x,
pred_infinite P ->
|-- |==> Exists g, [| P g |] ** own g x.
Axiom alloc_cofinite : ∀ (G : gset (gname A)) x,
|-- |==> Exists g, [| g ∉ G |] ** own g x.
Axiom alloc : ∀ x, |-- |==> Exists g, own g x.
TODO: Automation (generically derivable)
CMRA
#[local] Notation RA A := (agreeR (leibnizO A)).
Class G (A : Type) (Σ : gFunctors) : Set := G_inG : inG Σ (RA A).
#[global] Existing Instance G_inG.
Definition Σ (A : Type) : gFunctors := #[ GFunctor (RA A) ].
Lemma subG {A Σ} : subG (agree.Σ A) Σ -> G A Σ.
Proof. solve_inG. Qed.
Ghosts
Definition gname (A : Type) : Set := iprop.gname.
#[local] Instance gname_inhabited A : Inhabited (gname A) := _.
#[local] Instance gname_eq_dec A : EqDecision (gname A) := _.
#[local] Instance gname_countable A : Countable (gname A) := _.
Predicates
Section defs.
Context {A} {thread_info : biIndex} {Σ} `{!agree.G A Σ}.
#[local] Notation to_agree := (to_agree (A:=leibnizO A)).
Definition own (g : gname A) (x : A) : mpred :=
own g (to_agree x).
#[local] Instance own_objective : Objective2 own := _.
#[local] Instance own_timeless : Timeless2 own := _.
#[local] Instance own_knowledge : Knowledge2 own.
Proof. solve_knowledge. Qed.
#[local] Instance own_agree g : Agree1 (own g).
Proof.
TODO (PDS): Shouldn't need to expose to_agree.
intros. rewrite -(inj_iff to_agree). apply _.
Qed.
Lemma alloc_strong_dep : ∀ (f : gname A -> A) (P : gname A -> Prop),
pred_infinite P ->
|-- |==> Exists g, [| P g |] ** own g (f g).
Proof. intros. by apply: own_alloc_strong_dep'. Qed.
Lemma alloc_cofinite_dep : ∀ (f : gname A -> A) (G : gset (gname A)),
|-- |==> Exists g, [| g ∉ G |] ** own g (f g).
Proof. intros. by apply: own_alloc_cofinite_dep'. Qed.
Lemma alloc_dep : ∀ (f : gname A -> A),
|-- |==> Exists g, own g (f g).
Proof. intros. by apply: own_alloc_dep. Qed.
Lemma alloc_strong : ∀ (P : gname A -> Prop) x,
pred_infinite P ->
|-- |==> Exists g, [| P g |] ** own g x.
Proof. intros. by apply: own_alloc_strong'. Qed.
Lemma alloc_cofinite : ∀ (G : gset (gname A)) x,
|-- |==> Exists g, [| g ∉ G |] ** own g x.
Proof. intros. by apply: own_alloc_cofinite'. Qed.
Lemma alloc x : |-- |==> Exists g, own g x.
Proof. by apply own_alloc. Qed.
End defs.
End agree.
Qed.
Lemma alloc_strong_dep : ∀ (f : gname A -> A) (P : gname A -> Prop),
pred_infinite P ->
|-- |==> Exists g, [| P g |] ** own g (f g).
Proof. intros. by apply: own_alloc_strong_dep'. Qed.
Lemma alloc_cofinite_dep : ∀ (f : gname A -> A) (G : gset (gname A)),
|-- |==> Exists g, [| g ∉ G |] ** own g (f g).
Proof. intros. by apply: own_alloc_cofinite_dep'. Qed.
Lemma alloc_dep : ∀ (f : gname A -> A),
|-- |==> Exists g, own g (f g).
Proof. intros. by apply: own_alloc_dep. Qed.
Lemma alloc_strong : ∀ (P : gname A -> Prop) x,
pred_infinite P ->
|-- |==> Exists g, [| P g |] ** own g x.
Proof. intros. by apply: own_alloc_strong'. Qed.
Lemma alloc_cofinite : ∀ (G : gset (gname A)) x,
|-- |==> Exists g, [| g ∉ G |] ** own g x.
Proof. intros. by apply: own_alloc_cofinite'. Qed.
Lemma alloc x : |-- |==> Exists g, own g x.
Proof. by apply own_alloc. Qed.
End defs.
End agree.