bedrock.prelude.sts
(*
* Copyright (C) BedRock Systems Inc. 2020
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import stdpp.propset.
Require Import bedrock.prelude.base.
Require Import bedrock.prelude.finite.
Require Import bedrock.prelude.functions.
Require Import bedrock.prelude.lens.
Import LensNotations.
#[local] Open Scope lens_scope.
* Copyright (C) BedRock Systems Inc. 2020
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import stdpp.propset.
Require Import bedrock.prelude.base.
Require Import bedrock.prelude.finite.
Require Import bedrock.prelude.functions.
Require Import bedrock.prelude.lens.
Import LensNotations.
#[local] Open Scope lens_scope.
Labeled transition systems
State type
Initial state predicate
Step relation of the LTS
None means Tau.
Reflexive, transitive closure of steps
Fixpoint step_star {L} (STS : sts L)
(s : STS.(_state)) (ls : list (option L)) (s' : STS.(_state)) : Prop :=
match ls with
| ol :: ls' => exists s'', STS.(_step) s ol s'' /\ step_star STS s'' ls' s'
| [] => s = s'
end.
(s : STS.(_state)) (ls : list (option L)) (s' : STS.(_state)) : Prop :=
match ls with
| ol :: ls' => exists s'', STS.(_step) s ol s'' /\ step_star STS s'' ls' s'
| [] => s = s'
end.
Reflexive transitive closure of internal steps
Definition step_star_tau {L} (STS : sts L)
(s s' : STS.(_state)) : Prop :=
exists n : nat, step_star STS s (replicate n None) s'.
(s s' : STS.(_state)) : Prop :=
exists n : nat, step_star STS s (replicate n None) s'.
Composition of closures
Lemma step_star_comp L (STS : sts L) s s' s'' lbls lbls' :
step_star STS s lbls s' ->
step_star STS s' lbls' s'' ->
step_star STS s (lbls ++ lbls') s''.
Proof.
move: s s' s''.
induction lbls as [|?? IH] =>[s s' s'' /= ->//|s s' s''].
move=>[s3 [Hss3 Hs3s']] Hs's''.
rewrite -app_comm_cons //=.
by exists s3; split; last apply: IH.
Qed.
Lemma step_star_tau_comp L (STS : sts L) s s' s'' :
step_star_tau STS s s' ->
step_star_tau STS s' s'' ->
step_star_tau STS s s''.
Proof.
move=>[n Hs] [n' Hs'].
by exists (n + n'); rewrite replicate_add; apply: step_star_comp.
Qed.
step_star STS s lbls s' ->
step_star STS s' lbls' s'' ->
step_star STS s (lbls ++ lbls') s''.
Proof.
move: s s' s''.
induction lbls as [|?? IH] =>[s s' s'' /= ->//|s s' s''].
move=>[s3 [Hss3 Hs3s']] Hs's''.
rewrite -app_comm_cons //=.
by exists s3; split; last apply: IH.
Qed.
Lemma step_star_tau_comp L (STS : sts L) s s' s'' :
step_star_tau STS s s' ->
step_star_tau STS s' s'' ->
step_star_tau STS s s''.
Proof.
move=>[n Hs] [n' Hs'].
by exists (n + n'); rewrite replicate_add; apply: step_star_comp.
Qed.
Reflexive transitive closure of external steps
We model the closure as interleaving of external steps
with finitely many (possibly 0) internal tau steps
Fixpoint step_star_ext {L} (STS : sts L)
(s : STS.(_state)) (ls : list L) (s' : STS.(_state)) : Prop :=
match ls with
| l :: ls' => exists s'' s''', step_star_tau STS s s'' /\
STS.(_step) s'' (Some l) s''' /\ step_star_ext STS s''' ls' s'
| [] => step_star_tau STS s s'
end.
Section map.
(*
L is the type of *internal* events
L' is the type of *external* events *)
Context {L L' : Type} (f : L -> L' -> Prop).
Variable (STS : sts L).
Variant Map_step (s : STS.(_state)) : option L' -> STS -> Prop :=
| MAP_tau {s'}
(_ : _step STS s None s')
: Map_step s None s'
| MAP_action {s' l l'}
(_ : STS.(_step) s (Some l) s')
(_ : f l l')
: Map_step s (Some l') s'.
(s : STS.(_state)) (ls : list L) (s' : STS.(_state)) : Prop :=
match ls with
| l :: ls' => exists s'' s''', step_star_tau STS s s'' /\
STS.(_step) s'' (Some l) s''' /\ step_star_ext STS s''' ls' s'
| [] => step_star_tau STS s s'
end.
Section map.
(*
L is the type of *internal* events
L' is the type of *external* events *)
Context {L L' : Type} (f : L -> L' -> Prop).
Variable (STS : sts L).
Variant Map_step (s : STS.(_state)) : option L' -> STS -> Prop :=
| MAP_tau {s'}
(_ : _step STS s None s')
: Map_step s None s'
| MAP_action {s' l l'}
(_ : STS.(_step) s (Some l) s')
(_ : f l l')
: Map_step s (Some l') s'.
Definition map : sts L' :=
{| _init_state := STS.(_init_state)
; _step := Map_step |}.
End map.
Section hide.
{| _init_state := STS.(_init_state)
; _step := Map_step |}.
End map.
Section hide.
P e holds on events e that should not connect to the outside
world, i.e. they must match internal to this system or they are
not enabled.
Context {L : Type} (P : L -> Prop).
Variant Hide_step (l : L) : L -> Prop :=
| HIDE (_ : ~P l)
: Hide_step l l.
Variant Hide_step (l : L) : L -> Prop :=
| HIDE (_ : ~P l)
: Hide_step l l.
Hiding internal events
To prevent "Internal" events from escaping, you can do the followinghide (fun x => match x with
| Internal _ => False
| _ => True
end) st
Definition hide : sts L -> sts L := map Hide_step.
End hide.
Section par.
Context {e : Type} (dual : e -> e -> Prop).
Variable (L R : sts e).
Variant Par_step : L * R -> option e -> L * R -> Prop :=
| PAR_comm {l l' r r' eL eR}
(_ : _step L l (Some eL) l')
(_ : _step R r (Some eR) r')
(_ : dual eL eR)
: Par_step (l,r) None (l',r')
| PAR_left {l l' r e}
(_ : _step L l e l')
: Par_step (l,r) e (l',r)
| PAR_right {l r r' e}
(_ : _step R r e r')
: Par_step (l,r) e (l,r')
.
End hide.
Section par.
Context {e : Type} (dual : e -> e -> Prop).
Variable (L R : sts e).
Variant Par_step : L * R -> option e -> L * R -> Prop :=
| PAR_comm {l l' r r' eL eR}
(_ : _step L l (Some eL) l')
(_ : _step R r (Some eR) r')
(_ : dual eL eR)
: Par_step (l,r) None (l',r')
| PAR_left {l l' r e}
(_ : _step L l e l')
: Par_step (l,r) e (l',r)
| PAR_right {l r r' e}
(_ : _step R r e r')
: Par_step (l,r) e (l,r')
.
Binary parallel composition
this allows you to compose two ts with possible communication between them.
Definition par : sts e :=
{| _init_state '(l,r) := L.(_init_state) l /\ R.(_init_state) r
; _step := Par_step |}.
End par.
{| _init_state '(l,r) := L.(_init_state) l /\ R.(_init_state) r
; _step := Par_step |}.
End par.
bundled state transition systems.
Record t := {
Label : Type
; _sts :> sts Label
}.
#[global] Arguments Build_t {_} _.
Definition State (x : t) := x.(_sts).(_state).
Definition init_state (x : t) : State x -> Prop := x.(_sts).(_init_state).
Definition step (x : t) : State x -> option x.(Label) -> State x -> Prop :=
x.(_sts).(_step).
(* Let these simplify as if they were projections. *)
#[global] Arguments State !_ /.
#[global] Arguments init_state !_ /.
#[global] Arguments step !_ /.
End Sts.
Module Compose.
(* The configuration for a composition *)
Record config := {
(* logical name of each component *)
name : Set;
#[global] name_eq_dec :: EqDecision name;
#[global] name_finite :: Finite name;
(* external event type of the composition *)
external_event : Set;
(* LTS of each component *)
sts_name : name -> Sts.t;
(* LTSes communicate through canceling events
n1 initiates the communication, and n2 receives it. *)
cancel_evt_asym : ∀ (n1 n2 : name),
Sts.Label (sts_name n1) -> Sts.Label (sts_name n2) -> Prop;
cancel_evt (n1 n2 : name)
(l1 : Sts.Label (sts_name n1)) (l2 : Sts.Label (sts_name n2)) :=
cancel_evt_asym n1 n2 l1 l2 \/ cancel_evt_asym n2 n1 l2 l1;
(* A component's event can be external *)
inj_evt : ∀ (n : name), Sts.Label (sts_name n) -> option external_event;
}.
Section Compose.
Context (sf: config).
Implicit Types (n : name sf).
Definition State : Type := ∀ n, Sts.State (sts_name sf n).
Definition init_state (s: State) : Prop := ∀ n, Sts.init_state _ (s n).
Definition eq_except (n : list _) (s s' : State) :=
∀ n', n' ∉ n -> s n' = s' n'.
Definition compose_lts : Sts.sts (external_event sf) := {|
Sts._state := State;
Sts._init_state := init_state;
(* a step of the composition is either:
- an externally visible step which comes from some constituent component n
- a tau step, which is either
+ a tau step of some constituent component n
+ an internal communication step between two components na and nb *)
Sts._step (s : State) (e : option (external_event sf)) (s' : State) :=
match e with
| Some ext_e =>
∃ n : name sf,
eq_except [n] s s' ∧ (* only differ in component n *)
∃ evt_x : Sts.Label (sts_name sf n),
(* evt_x is externally ext_e *)
inj_evt sf n evt_x = Some ext_e ∧
Sts.step (sts_name sf n) (s n) (Some evt_x) (s' n)
| None =>
(* either a tau step of n *)
(∃ n : name sf, eq_except [n] s s' ∧
Sts.step (sts_name sf n) (s n) None (s' n))
∨
(* or a communication step between na and nb *)
(∃ (na nb : name sf)
(la : Sts.Label (sts_name sf na))
(lb : Sts.Label (sts_name sf nb)),
na ≠ nb ∧ (* communication requires two *distinct* parties *)
Sts.step (sts_name sf na) (s na) (Some la) (s' na) ∧
eq_except [na;nb] s s' ∧
Sts.step (sts_name sf nb) (s nb) (Some lb) (s' nb) ∧
cancel_evt sf na nb la lb)
end
|}.
Definition make : Sts.t := Sts.Build_t compose_lts.
End Compose.
#[global] Arguments State !_ /.
(* Lens to project state of the component n *)
Definition _fam_sts (fam : Compose.config) (n : Compose.name fam) :
Compose.State fam -l> Sts.State (Compose.sts_name fam n) :=
lens.of_get_set (fun st => st n) (fun st ip => dep_fn_insert n ip st).
(* Lifting cancel_evt to sets *)
Definition dual_sets (sf : Compose.config) {n1 n2 : Compose.name sf}
(STEP1 : propset (Sts.Label (Compose.sts_name _ n1)))
(STEP2 : propset (Sts.Label (Compose.sts_name _ n2))) :=
(∀ e1, e1 ∈ STEP1 -> ∃ e2, e2 ∈ STEP2 ∧ Compose.cancel_evt sf _ _ e1 e2) ∧
(∀ e2, e2 ∈ STEP2 -> ∃ e1, e1 ∈ STEP1 ∧ Compose.cancel_evt sf _ _ e1 e2).
Section Compose.
Context (sf: config).
Implicit Types (n : name sf).
Lemma dual_sets_singletons {n1 n2}
(s1 : Sts.Label (Compose.sts_name _ n1))
(s2 : Sts.Label (Compose.sts_name _ n2)) :
dual_sets sf {[s1]} {[s2]} ↔ Compose.cancel_evt sf _ _ s1 s2.
Proof. rewrite /dual_sets. set_solver. Qed.
#[global] Instance dual_sets_proper {n1 n2} :
Proper (equiv ==> equiv ==> iff) (dual_sets sf (n1 := n1) (n2 := n2)).
Proof using Type*. rewrite /dual_sets. intros ??? ???. set_solver. Qed.
Lemma step_star_tau_lift
(n__comp : Compose.name sf)
(st : Compose.State sf)
(st__comp' : Sts.State (Compose.sts_name sf n__comp)) :
Sts.step_star_tau _ (st n__comp) st__comp'
-> Sts.step_star_tau (compose_lts sf) st
(st &: _fam_sts _ n__comp .= st__comp').
Proof.
move=>[n]. move: st st__comp'.
induction n=>st st__comp'.
- by move=>/= <-; exists 0; rewrite dep_fn_insert_set_view_fun.
- move=> /= [s' [Hs']].
have := Refine (IHn (dep_fn_insert n__comp s' st) st__comp').
rewrite dep_fn_insert_eq => H {}/H.
rewrite /= dep_fn_insert_set_set_fun.
move=>[n' Hstep_star'].
exists (S n'), (dep_fn_insert n__comp s' st).
split; last done.
left; exists n__comp.
(* TODO use Compose_eq_except_insert_in from downstream. *)
split; last by rewrite dep_fn_insert_view_set.
move=>n''/not_elem_of_cons [Hne ?].
by rewrite (dep_fn_insert_view_set_ne st).
Qed.
Lemma step_star_ext_lift_single
(n__comp n__cncl : Compose.name sf)
(st : Compose.State sf)
(st__comp' : Sts.State (Compose.sts_name sf n__comp))
(lbl : Sts.Label (Compose.sts_name sf n__comp))
(st__cncl' : Sts.State (Compose.sts_name sf n__cncl))
(lbl' : Sts.Label (Compose.sts_name sf n__cncl)) :
n__comp <> n__cncl
-> Sts.step_star_ext _ (st n__comp) [lbl] st__comp'
-> cancel_evt sf n__comp n__cncl lbl lbl'
-> Sts.step (sts_name sf n__cncl) (st n__cncl) (Some lbl') st__cncl'
-> Sts.step_star_tau (compose_lts sf) st
(st &: _fam_sts _ n__comp .= st__comp'
&: _fam_sts _ n__cncl .= st__cncl').
Proof.
move=>Hne.
move=>[st'' [st''' [Hsteps_tau [Hstep Hsteps]]]] Hcncl Hstep'.
apply: Sts.step_star_tau_comp; first
by apply: step_star_tau_lift.
rewrite -(dep_fn_insert_view_set st n__comp st''') in Hsteps.
elim (step_star_tau_lift n__comp
(dep_fn_insert n__comp st'''
(dep_fn_insert n__cncl st__cncl' st)) st__comp');
last by move: Hsteps; rewrite !dep_fn_insert_view_set.
move=>n'.
rewrite /= dep_fn_insert_set_set_fun.
rewrite /= (dep_fn_insert_exchange_fun _ n__comp n__cncl) //= =>?.
eexists (S n'), _; split; last by eassumption.
right; exists n__comp, n__cncl, lbl, lbl'.
split; first done.
split; first by rewrite !dep_fn_insert_view_set.
split.
- rewrite /eq_except=>n.
move=>/not_elem_of_cons [Hne' /not_elem_of_cons [Hne'' ?]].
by rewrite !dep_fn_insert_view_set_ne //.
- split; last done.
by rewrite !(dep_fn_insert_view_set_ne _ n__comp n__cncl) //
dep_fn_insert_view_set.
Qed.
End Compose.
End Compose.
#[global] Notation LTS := Sts.sts.
#[global] Notation lts_state := Sts._state.
#[global] Notation lts_step := Sts._step.
#[global] Notation lts_init_state := Sts._init_state.
(* TODO: unify reachable and Sts.step_star
The following lemma should hold:
Lemma reachable_step_star {l} (lts : LTS l) s es s' :
reachable lts s es s' <-> Sts.step_star lts s es s'.
The difference is that reachable recurses on the tail (es ++ e), while
Sts.step_star recurses on the head (e :: es).
*)
Inductive reachable {Label : Type} (lts : LTS Label) (s : lts.(lts_state))
: list (option Label) -> lts.(lts_state) -> Prop :=
| ReachableDone : reachable lts s nil s
| ReachableStep {e es s' s''} (_ : reachable lts s es s') (_ : lts.(lts_step) s' e s'')
: reachable lts s (es ++ [e]) s''.
Lemma reachable_nil {Label : Type} (lts : Sts.sts Label) s s' :
reachable lts s [] s' <-> s = s'.
Proof.
split; intros STEP.
- inversion STEP as [|???? REACH ? EqH]; [done|].
by apply app_nil in EqH as [].
- subst; by constructor.
Qed.
Lemma reachable_singleton {Label : Type} (lts : LTS Label) s e s' :
reachable lts s [e] s' <-> lts.(lts_step) s e s'.
Proof.
split; intros STEP.
- inversion STEP as [|???? REACH ? EqH].
destruct es; simplify_list_eq.
+ apply reachable_nil in REACH. by subst.
+ match goal with
| H : _ ++ _ = [] |- _ => by apply app_nil in H as []
end.
- eapply (@ReachableStep _ _ _ _ []); [|done]. constructor.
Qed.
Label : Type
; _sts :> sts Label
}.
#[global] Arguments Build_t {_} _.
Definition State (x : t) := x.(_sts).(_state).
Definition init_state (x : t) : State x -> Prop := x.(_sts).(_init_state).
Definition step (x : t) : State x -> option x.(Label) -> State x -> Prop :=
x.(_sts).(_step).
(* Let these simplify as if they were projections. *)
#[global] Arguments State !_ /.
#[global] Arguments init_state !_ /.
#[global] Arguments step !_ /.
End Sts.
Module Compose.
(* The configuration for a composition *)
Record config := {
(* logical name of each component *)
name : Set;
#[global] name_eq_dec :: EqDecision name;
#[global] name_finite :: Finite name;
(* external event type of the composition *)
external_event : Set;
(* LTS of each component *)
sts_name : name -> Sts.t;
(* LTSes communicate through canceling events
n1 initiates the communication, and n2 receives it. *)
cancel_evt_asym : ∀ (n1 n2 : name),
Sts.Label (sts_name n1) -> Sts.Label (sts_name n2) -> Prop;
cancel_evt (n1 n2 : name)
(l1 : Sts.Label (sts_name n1)) (l2 : Sts.Label (sts_name n2)) :=
cancel_evt_asym n1 n2 l1 l2 \/ cancel_evt_asym n2 n1 l2 l1;
(* A component's event can be external *)
inj_evt : ∀ (n : name), Sts.Label (sts_name n) -> option external_event;
}.
Section Compose.
Context (sf: config).
Implicit Types (n : name sf).
Definition State : Type := ∀ n, Sts.State (sts_name sf n).
Definition init_state (s: State) : Prop := ∀ n, Sts.init_state _ (s n).
Definition eq_except (n : list _) (s s' : State) :=
∀ n', n' ∉ n -> s n' = s' n'.
Definition compose_lts : Sts.sts (external_event sf) := {|
Sts._state := State;
Sts._init_state := init_state;
(* a step of the composition is either:
- an externally visible step which comes from some constituent component n
- a tau step, which is either
+ a tau step of some constituent component n
+ an internal communication step between two components na and nb *)
Sts._step (s : State) (e : option (external_event sf)) (s' : State) :=
match e with
| Some ext_e =>
∃ n : name sf,
eq_except [n] s s' ∧ (* only differ in component n *)
∃ evt_x : Sts.Label (sts_name sf n),
(* evt_x is externally ext_e *)
inj_evt sf n evt_x = Some ext_e ∧
Sts.step (sts_name sf n) (s n) (Some evt_x) (s' n)
| None =>
(* either a tau step of n *)
(∃ n : name sf, eq_except [n] s s' ∧
Sts.step (sts_name sf n) (s n) None (s' n))
∨
(* or a communication step between na and nb *)
(∃ (na nb : name sf)
(la : Sts.Label (sts_name sf na))
(lb : Sts.Label (sts_name sf nb)),
na ≠ nb ∧ (* communication requires two *distinct* parties *)
Sts.step (sts_name sf na) (s na) (Some la) (s' na) ∧
eq_except [na;nb] s s' ∧
Sts.step (sts_name sf nb) (s nb) (Some lb) (s' nb) ∧
cancel_evt sf na nb la lb)
end
|}.
Definition make : Sts.t := Sts.Build_t compose_lts.
End Compose.
#[global] Arguments State !_ /.
(* Lens to project state of the component n *)
Definition _fam_sts (fam : Compose.config) (n : Compose.name fam) :
Compose.State fam -l> Sts.State (Compose.sts_name fam n) :=
lens.of_get_set (fun st => st n) (fun st ip => dep_fn_insert n ip st).
(* Lifting cancel_evt to sets *)
Definition dual_sets (sf : Compose.config) {n1 n2 : Compose.name sf}
(STEP1 : propset (Sts.Label (Compose.sts_name _ n1)))
(STEP2 : propset (Sts.Label (Compose.sts_name _ n2))) :=
(∀ e1, e1 ∈ STEP1 -> ∃ e2, e2 ∈ STEP2 ∧ Compose.cancel_evt sf _ _ e1 e2) ∧
(∀ e2, e2 ∈ STEP2 -> ∃ e1, e1 ∈ STEP1 ∧ Compose.cancel_evt sf _ _ e1 e2).
Section Compose.
Context (sf: config).
Implicit Types (n : name sf).
Lemma dual_sets_singletons {n1 n2}
(s1 : Sts.Label (Compose.sts_name _ n1))
(s2 : Sts.Label (Compose.sts_name _ n2)) :
dual_sets sf {[s1]} {[s2]} ↔ Compose.cancel_evt sf _ _ s1 s2.
Proof. rewrite /dual_sets. set_solver. Qed.
#[global] Instance dual_sets_proper {n1 n2} :
Proper (equiv ==> equiv ==> iff) (dual_sets sf (n1 := n1) (n2 := n2)).
Proof using Type*. rewrite /dual_sets. intros ??? ???. set_solver. Qed.
Lemma step_star_tau_lift
(n__comp : Compose.name sf)
(st : Compose.State sf)
(st__comp' : Sts.State (Compose.sts_name sf n__comp)) :
Sts.step_star_tau _ (st n__comp) st__comp'
-> Sts.step_star_tau (compose_lts sf) st
(st &: _fam_sts _ n__comp .= st__comp').
Proof.
move=>[n]. move: st st__comp'.
induction n=>st st__comp'.
- by move=>/= <-; exists 0; rewrite dep_fn_insert_set_view_fun.
- move=> /= [s' [Hs']].
have := Refine (IHn (dep_fn_insert n__comp s' st) st__comp').
rewrite dep_fn_insert_eq => H {}/H.
rewrite /= dep_fn_insert_set_set_fun.
move=>[n' Hstep_star'].
exists (S n'), (dep_fn_insert n__comp s' st).
split; last done.
left; exists n__comp.
(* TODO use Compose_eq_except_insert_in from downstream. *)
split; last by rewrite dep_fn_insert_view_set.
move=>n''/not_elem_of_cons [Hne ?].
by rewrite (dep_fn_insert_view_set_ne st).
Qed.
Lemma step_star_ext_lift_single
(n__comp n__cncl : Compose.name sf)
(st : Compose.State sf)
(st__comp' : Sts.State (Compose.sts_name sf n__comp))
(lbl : Sts.Label (Compose.sts_name sf n__comp))
(st__cncl' : Sts.State (Compose.sts_name sf n__cncl))
(lbl' : Sts.Label (Compose.sts_name sf n__cncl)) :
n__comp <> n__cncl
-> Sts.step_star_ext _ (st n__comp) [lbl] st__comp'
-> cancel_evt sf n__comp n__cncl lbl lbl'
-> Sts.step (sts_name sf n__cncl) (st n__cncl) (Some lbl') st__cncl'
-> Sts.step_star_tau (compose_lts sf) st
(st &: _fam_sts _ n__comp .= st__comp'
&: _fam_sts _ n__cncl .= st__cncl').
Proof.
move=>Hne.
move=>[st'' [st''' [Hsteps_tau [Hstep Hsteps]]]] Hcncl Hstep'.
apply: Sts.step_star_tau_comp; first
by apply: step_star_tau_lift.
rewrite -(dep_fn_insert_view_set st n__comp st''') in Hsteps.
elim (step_star_tau_lift n__comp
(dep_fn_insert n__comp st'''
(dep_fn_insert n__cncl st__cncl' st)) st__comp');
last by move: Hsteps; rewrite !dep_fn_insert_view_set.
move=>n'.
rewrite /= dep_fn_insert_set_set_fun.
rewrite /= (dep_fn_insert_exchange_fun _ n__comp n__cncl) //= =>?.
eexists (S n'), _; split; last by eassumption.
right; exists n__comp, n__cncl, lbl, lbl'.
split; first done.
split; first by rewrite !dep_fn_insert_view_set.
split.
- rewrite /eq_except=>n.
move=>/not_elem_of_cons [Hne' /not_elem_of_cons [Hne'' ?]].
by rewrite !dep_fn_insert_view_set_ne //.
- split; last done.
by rewrite !(dep_fn_insert_view_set_ne _ n__comp n__cncl) //
dep_fn_insert_view_set.
Qed.
End Compose.
End Compose.
#[global] Notation LTS := Sts.sts.
#[global] Notation lts_state := Sts._state.
#[global] Notation lts_step := Sts._step.
#[global] Notation lts_init_state := Sts._init_state.
(* TODO: unify reachable and Sts.step_star
The following lemma should hold:
Lemma reachable_step_star {l} (lts : LTS l) s es s' :
reachable lts s es s' <-> Sts.step_star lts s es s'.
The difference is that reachable recurses on the tail (es ++ e), while
Sts.step_star recurses on the head (e :: es).
*)
Inductive reachable {Label : Type} (lts : LTS Label) (s : lts.(lts_state))
: list (option Label) -> lts.(lts_state) -> Prop :=
| ReachableDone : reachable lts s nil s
| ReachableStep {e es s' s''} (_ : reachable lts s es s') (_ : lts.(lts_step) s' e s'')
: reachable lts s (es ++ [e]) s''.
Lemma reachable_nil {Label : Type} (lts : Sts.sts Label) s s' :
reachable lts s [] s' <-> s = s'.
Proof.
split; intros STEP.
- inversion STEP as [|???? REACH ? EqH]; [done|].
by apply app_nil in EqH as [].
- subst; by constructor.
Qed.
Lemma reachable_singleton {Label : Type} (lts : LTS Label) s e s' :
reachable lts s [e] s' <-> lts.(lts_step) s e s'.
Proof.
split; intros STEP.
- inversion STEP as [|???? REACH ? EqH].
destruct es; simplify_list_eq.
+ apply reachable_nil in REACH. by subst.
+ match goal with
| H : _ ++ _ = [] |- _ => by apply app_nil in H as []
end.
- eapply (@ReachableStep _ _ _ _ []); [|done]. constructor.
Qed.