bedrock.prelude.lens
(*
* Copyright (C) 2021-2022 BedRock Systems, Inc.
* All rights reserved.
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
* Copyright (C) 2021-2022 BedRock Systems, Inc.
* All rights reserved.
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
This defines several useful lenses.
Some of them, however, do not satisfy all lens laws ("fake lenses").
Require Import elpi.apps.NES.NES.
Require Import bedrock.prelude.base.
Require Import bedrock.prelude.finite.
Require Import bedrock.prelude.functions.
Require Export Lens.Lens.
Export LensNotations.
#[local] Open Scope lens_scope.
Definition _bit (n : N) : N -l> bool :=
{| view := fun x => N.testbit x n
; over := fun (f : bool -> bool) x =>
if f (N.testbit x n) then N.setbit x n else N.clearbit x n |}.
Notation "X ~l> Y" := (X -l> Y)
(at level 99, Y at level 200, right associativity, only parsing) : type_scope.
^^ Notation to be used for "partial" lenses that do not respect lens laws.
Their existence is controversial, but inconvenient to avoid without supporting more optics.
(* XXX To upstream somewhere; it belongs upstream and/or in coq-lens. *)
#[local] Arguments Build_Lens {_ _ _ _}.
NES.Begin lens.
Definition of_get_set {s t a b} (get : s -> a) (set : s -> b -> t) : Lens s t a b :=
Build_Lens get (λ (upd : a -> b) (x : s), set x (upd (get x))).
(* For this to produce a lawful lens, it suffices that get and put are
inverses, as in iso2lens. *)
Definition of_get_put {X Y} (get : X -> Y) (put : Y -> X) : X -l> Y :=
of_get_set get (fun _ => put).
NES.End lens.
Definition _id {A} : A -l> A := lens.of_get_put id id.
Definition _fst {A B} : A * B -l> A :=
{| view := fst; over f p := (f p.1, p.2) |}.
Definition _snd {A B} : A * B -l> B :=
{| view := snd; over f p := (p.1, f p.2) |}.
Definition _const {A B} (b : B) : A ~l> B := Build_Lens (const b) (λ _ a, a).
(* For this lens to be lawful, it suffices that get and set are inverses on the
image of l.(set) i*)
Definition _lift {A B C} (get : A -> B) (set : B -> A) (l : B -l> C) : A -l> C :=
lens_compose (lens.of_get_put get set) l.
Definition _map_apply {K V M} `{Insert K V M} `{LookupTotal K V M} (k : K) : M -l> V :=
{| view f := f !!! k
; over upd_f whole_f :=
<[ k := upd_f (whole_f !!! k) ]> whole_f
|}.
Definition _apply {A B} `{EqDecision A} (a : A) : (A -> B) -l> B :=
_map_apply a.
If you can lens values V for any key K out of state S,
you can also lens an entire K -> V out of S, as long as K is finite.
Definition _total_fun `{Finite K} {V S} (_key_lens : K -> (S -l> V)) : S -l> (K -> V) :=
lens.of_get_set
(λ (s : S) (k : K), s .^ _key_lens k)
(λ (s0 : S) (kv : K -> V),
let set_one_key (k : K) (s : S) : S := s &: _key_lens k .= kv k in
foldr set_one_key s0 (enum K)).
(* Show that we can remove the abstractions in _apply and get the old definition. *)
Section _apply_unfold.
Lemma view_apply {A B} `{EqDecision A} (a : A) (f : A -> B) : view (_apply a) f = f a.
Proof. done. Qed.
#[local] Lemma over_apply_raw {A B} `{EqDecision A} (a : A) (upd_f : B -> B) whole_f (x : A) :
over (_apply a) upd_f whole_f x =
if decide (a = x) then upd_f (whole_f a) else whole_f x.
Proof. done. Qed.
Lemma over_apply {A B} `{EqDecision A} (a : A) (upd_f : B -> B) whole_f (x : A) :
over (_apply a) upd_f whole_f x =
if bool_decide (a = x) then upd_f (whole_f a) else whole_f x.
Proof. by rewrite over_apply_raw decide_bool_decide. Qed.
End _apply_unfold.
(*
Beware: this is unlikely to satisfy lens laws unless we're dealing with
"disjoint" lenses. And we'd need a PCM to formalize that.
Even monoid axioms seem tricky.
But _my_ concrete uses seem well-behaved.
*)
Section monoid.
Context {A : Type} `{!Empty M} `{!Union M}.
#[global] Instance lens_unit : Empty (A -l> M) := _const ∅.
#[global] Instance lens_union : Union (A -l> M) := λ l1 l2,
Build_Lens
(λ a, a .^ l1 ∪ a .^ l2)
(λ upd s, s &: l1 %= upd &: l2 %= upd).
Import bedrock.prelude.axioms.funext.
#[global] Instance lens_left_id `{!LeftId (=@{M}) ∅ (∪)} :
LeftId (=@{A -l> M}) ∅ (∪).
Proof.
rewrite /lens_unit /lens_union /empty /union /=.
move=>[v o] /=; f_equiv; funext; last done.
intros; by rewrite left_id_L.
Qed.
#[global] Instance lens_right_id `{!RightId (=@{M}) ∅ (∪)} :
RightId (=@{A -l> M}) ∅ (∪).
Proof.
rewrite /lens_unit /lens_union /empty /union /=.
move=>[v o] /=; f_equiv; funext; last done.
intros; by rewrite right_id_L.
Qed.
#[global] Instance lens_assoc `{!Assoc (=@{M}) (∪)} :
Assoc (=@{A -l> M}) (∪).
Proof.
rewrite /lens_unit /lens_union /empty /union /=.
move=>a b c /=; f_equiv; funext.
intros; by rewrite assoc_L.
Qed.
End monoid.
Module iso.
Record t {A B} := Mk { f : A -> B ; g : B -> A }.
#[global] Arguments t : clear implicits.
#[global] Arguments Mk {A B} _ _ : assert.
(* TODO: these should be Cancel instances. *)
Record lawsT {A B} (l : iso.t A B) : Prop := MkLaws
{ f_g : ∀ b, l.(f) $ l.(g) b = b
; g_f : ∀ a, l.(g) $ l.(f) a = a
}.
Definition inv {A B} (iso : iso.t A B) : iso.t B A :=
Mk iso.(g) iso.(f).
End iso.
Definition iso2lens {A B} (i : iso.t A B) : A -l> B :=
lens.of_get_put (iso.f i) (iso.g i).
lens.of_get_set
(λ (s : S) (k : K), s .^ _key_lens k)
(λ (s0 : S) (kv : K -> V),
let set_one_key (k : K) (s : S) : S := s &: _key_lens k .= kv k in
foldr set_one_key s0 (enum K)).
(* Show that we can remove the abstractions in _apply and get the old definition. *)
Section _apply_unfold.
Lemma view_apply {A B} `{EqDecision A} (a : A) (f : A -> B) : view (_apply a) f = f a.
Proof. done. Qed.
#[local] Lemma over_apply_raw {A B} `{EqDecision A} (a : A) (upd_f : B -> B) whole_f (x : A) :
over (_apply a) upd_f whole_f x =
if decide (a = x) then upd_f (whole_f a) else whole_f x.
Proof. done. Qed.
Lemma over_apply {A B} `{EqDecision A} (a : A) (upd_f : B -> B) whole_f (x : A) :
over (_apply a) upd_f whole_f x =
if bool_decide (a = x) then upd_f (whole_f a) else whole_f x.
Proof. by rewrite over_apply_raw decide_bool_decide. Qed.
End _apply_unfold.
(*
Beware: this is unlikely to satisfy lens laws unless we're dealing with
"disjoint" lenses. And we'd need a PCM to formalize that.
Even monoid axioms seem tricky.
But _my_ concrete uses seem well-behaved.
*)
Section monoid.
Context {A : Type} `{!Empty M} `{!Union M}.
#[global] Instance lens_unit : Empty (A -l> M) := _const ∅.
#[global] Instance lens_union : Union (A -l> M) := λ l1 l2,
Build_Lens
(λ a, a .^ l1 ∪ a .^ l2)
(λ upd s, s &: l1 %= upd &: l2 %= upd).
Import bedrock.prelude.axioms.funext.
#[global] Instance lens_left_id `{!LeftId (=@{M}) ∅ (∪)} :
LeftId (=@{A -l> M}) ∅ (∪).
Proof.
rewrite /lens_unit /lens_union /empty /union /=.
move=>[v o] /=; f_equiv; funext; last done.
intros; by rewrite left_id_L.
Qed.
#[global] Instance lens_right_id `{!RightId (=@{M}) ∅ (∪)} :
RightId (=@{A -l> M}) ∅ (∪).
Proof.
rewrite /lens_unit /lens_union /empty /union /=.
move=>[v o] /=; f_equiv; funext; last done.
intros; by rewrite right_id_L.
Qed.
#[global] Instance lens_assoc `{!Assoc (=@{M}) (∪)} :
Assoc (=@{A -l> M}) (∪).
Proof.
rewrite /lens_unit /lens_union /empty /union /=.
move=>a b c /=; f_equiv; funext.
intros; by rewrite assoc_L.
Qed.
End monoid.
Module iso.
Record t {A B} := Mk { f : A -> B ; g : B -> A }.
#[global] Arguments t : clear implicits.
#[global] Arguments Mk {A B} _ _ : assert.
(* TODO: these should be Cancel instances. *)
Record lawsT {A B} (l : iso.t A B) : Prop := MkLaws
{ f_g : ∀ b, l.(f) $ l.(g) b = b
; g_f : ∀ a, l.(g) $ l.(f) a = a
}.
Definition inv {A B} (iso : iso.t A B) : iso.t B A :=
Mk iso.(g) iso.(f).
End iso.
Definition iso2lens {A B} (i : iso.t A B) : A -l> B :=
lens.of_get_put (iso.f i) (iso.g i).
Lens laws for monomorphic lenses A -l> B.
Provisional; these are useful as a sanity checks, but no inference convenience
is provided.
TODO FM-1193 for a proper solution.
Record LensLaws' {A B} {R : relation A} {S : relation B} {l : A -l> B} := MkLensLaws
{ view_over upd x : S (view l (over l upd x)) (upd (view l x))
; view_set x v : S (view l (set l v x)) v
; set_view x : R (set l (view l x) x) x
; set_set x v v' : R (set l v' (set l v x)) (set l v' x)
}.
Arguments LensLaws' {A B} R S l.
Lemma iso2lens_laws {A B} (i : iso.t A B) (Hl : iso.lawsT i) :
LensLaws' eq eq (iso2lens i).
Proof.
by case: i Hl => f g [/= f_g g_f]; split; simpl.
Qed.
Section _constr.
Context {A1 A2 B : Type} (constr : A1 -> A2) (inv : A2 -> option A1).
Definition _constr : (A2 -> B) -l> (A1 -> B) :=
{| view f r := f (constr r)
; over upd_f whole_f r :=
match inv r with
| Some gr => upd_f (λ r, whole_f (constr r)) gr
| _ => whole_f r
end |}.
(*
As a test, prove lens laws from
https://hackage.haskell.org/package/lens-5.0.1/docs/Control-Lens-Lens.html
*)
Lemma constr_view_over f upd a1
(Hinv1 : ∀ x, inv (constr x) = Some x) :
view _constr (over _constr upd f) a1 = upd (view _constr f) a1.
Proof. cbv. move: Hinv1 => /(_ a1). by case: (inv _) => [a [->]|]. Qed.
(* view l (set l v s) ≡ v *)
Lemma constr_view_set f a1 v
(Hinv1 : ∀ x, inv (constr x) = Some x) :
view _constr (set _constr v f) a1 = v a1.
Proof. apply constr_view_over, Hinv1. Qed.
(* set l (view l s) s ≡ s *)
Lemma constr_set_view f a2
(Hinv2 : ∀ a1 a2, inv a2 = Some a1 -> constr a1 = a2) :
set _constr (view _constr f) f a2 = f a2.
Proof. cbv. case E: (inv _) => [a1|//]. by rewrite (Hinv2 a1 a2). Qed.
(* set l v' (set l v s) ≡ set l v' s *)
Lemma constr_set_set f v v' a2 :
set _constr v' (set _constr v f) a2 = set _constr v' f a2.
Proof. cbv. by case_match. Qed.
Lemma constr_laws
(Hinv1 : ∀ x, inv (constr x) = Some x)
(Hinv2 : ∀ a1 a2, inv a2 = Some a1 -> constr a1 = a2) :
LensLaws' (pointwise_relation _ eq) (pointwise_relation _ eq) _constr.
Proof.
split; intros * ?.
{ exact: constr_view_over. }
{ exact: constr_view_set. }
{ exact: constr_set_view. }
{ apply: constr_set_set. }
Qed.
End _constr.
{ view_over upd x : S (view l (over l upd x)) (upd (view l x))
; view_set x v : S (view l (set l v x)) v
; set_view x : R (set l (view l x) x) x
; set_set x v v' : R (set l v' (set l v x)) (set l v' x)
}.
Arguments LensLaws' {A B} R S l.
Lemma iso2lens_laws {A B} (i : iso.t A B) (Hl : iso.lawsT i) :
LensLaws' eq eq (iso2lens i).
Proof.
by case: i Hl => f g [/= f_g g_f]; split; simpl.
Qed.
Section _constr.
Context {A1 A2 B : Type} (constr : A1 -> A2) (inv : A2 -> option A1).
Definition _constr : (A2 -> B) -l> (A1 -> B) :=
{| view f r := f (constr r)
; over upd_f whole_f r :=
match inv r with
| Some gr => upd_f (λ r, whole_f (constr r)) gr
| _ => whole_f r
end |}.
(*
As a test, prove lens laws from
https://hackage.haskell.org/package/lens-5.0.1/docs/Control-Lens-Lens.html
*)
Lemma constr_view_over f upd a1
(Hinv1 : ∀ x, inv (constr x) = Some x) :
view _constr (over _constr upd f) a1 = upd (view _constr f) a1.
Proof. cbv. move: Hinv1 => /(_ a1). by case: (inv _) => [a [->]|]. Qed.
(* view l (set l v s) ≡ v *)
Lemma constr_view_set f a1 v
(Hinv1 : ∀ x, inv (constr x) = Some x) :
view _constr (set _constr v f) a1 = v a1.
Proof. apply constr_view_over, Hinv1. Qed.
(* set l (view l s) s ≡ s *)
Lemma constr_set_view f a2
(Hinv2 : ∀ a1 a2, inv a2 = Some a1 -> constr a1 = a2) :
set _constr (view _constr f) f a2 = f a2.
Proof. cbv. case E: (inv _) => [a1|//]. by rewrite (Hinv2 a1 a2). Qed.
(* set l v' (set l v s) ≡ set l v' s *)
Lemma constr_set_set f v v' a2 :
set _constr v' (set _constr v f) a2 = set _constr v' f a2.
Proof. cbv. by case_match. Qed.
Lemma constr_laws
(Hinv1 : ∀ x, inv (constr x) = Some x)
(Hinv2 : ∀ a1 a2, inv a2 = Some a1 -> constr a1 = a2) :
LensLaws' (pointwise_relation _ eq) (pointwise_relation _ eq) _constr.
Proof.
split; intros * ?.
{ exact: constr_view_over. }
{ exact: constr_view_set. }
{ exact: constr_set_view. }
{ apply: constr_set_set. }
Qed.
End _constr.