bedrock.prelude.option
(*
* Copyright (c) 2020-2024 BedRock Systems, Inc.
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
(*
* The following code contains code derived from code original to the
* stdpp project. That original code is
*
* Copyright stdpp developers and contributors
*
* and used according to the following license.
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Original stdpp License:
* https://gitlab.mpi-sws.org/iris/stdpp/-/blob/5415ad3003fd4b587a2189ddc2cc29c1bd9a9999/LICENSE
*)
Require Import elpi.apps.locker.locker.
Require Import bedrock.prelude.base.
Require Import bedrock.prelude.bool.
Module option.
Definition existsb {A} (f : A -> bool) (m : option A) : bool :=
if m is Some x then f x else false.
* Copyright (c) 2020-2024 BedRock Systems, Inc.
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
(*
* The following code contains code derived from code original to the
* stdpp project. That original code is
*
* Copyright stdpp developers and contributors
*
* and used according to the following license.
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Original stdpp License:
* https://gitlab.mpi-sws.org/iris/stdpp/-/blob/5415ad3003fd4b587a2189ddc2cc29c1bd9a9999/LICENSE
*)
Require Import elpi.apps.locker.locker.
Require Import bedrock.prelude.base.
Require Import bedrock.prelude.bool.
Module option.
Definition existsb {A} (f : A -> bool) (m : option A) : bool :=
if m is Some x then f x else false.
Haskell's Data.Function.on
(https://hackage.haskell.org/package/base-4.17.0.0/docs/Data-Function.htmlv:on).
Examples:
- Lift relation [R] by precomposing with function [f] (with [C := Prop].
We provide theory specialized to this use-case.
Boolean version of stdpp's is_Some
Definition isSome {A} (m : option A) : bool :=
if m is Some _ then true else false.
Lemma isSomeP {A} {m : option A} : reflect (is_Some m) (isSome m).
Proof. destruct m; cbn; constructor. by eexists. exact: is_Some_None. Qed.
if m is Some _ then true else false.
Lemma isSomeP {A} {m : option A} : reflect (is_Some m) (isSome m).
Proof. destruct m; cbn; constructor. by eexists. exact: is_Some_None. Qed.
Theory for is_Some_proj
Lemma is_Some_proj_eq {A : Type} {mx : option A} (P : is_Some mx) :
mx = Some (is_Some_proj P).
Proof. rewrite /is_Some_proj. case_match; [done|by destruct P]. Qed.
mx = Some (is_Some_proj P).
Proof. rewrite /is_Some_proj. case_match; [done|by destruct P]. Qed.
Preorder properties lift through on.
Only import locally when declaring specialized instances!
These instances can lead to divergence of setoid rewriting, so they're only
available when importing on_props.
Module on_props.
Section on_props.
Import option.
Context {A B : Type} {f : A -> B}.
(* We use both R and strict R *)
Implicit Type (R : relation B).
(* We can safely make this global. *)
#[global] Instance on_decidable `{!RelDecision R} : RelDecision (on R f).
Proof. GUARD_TC. rewrite /on => ??. apply _. Defined.
Section on_props.
Import option.
Context {A B : Type} {f : A -> B}.
(* We use both R and strict R *)
Implicit Type (R : relation B).
(* We can safely make this global. *)
#[global] Instance on_decidable `{!RelDecision R} : RelDecision (on R f).
Proof. GUARD_TC. rewrite /on => ??. apply _. Defined.
#[export] Instance on_reflexive `{!Reflexive R} : Reflexive (on R f).
Proof. GUARD_TC. rewrite /on. by intros ?. Qed.
#[export] Instance on_irreflexive `{!Irreflexive R} : Irreflexive (on R f).
Proof. GUARD_TC. rewrite /on. by intros ??%irreflexivity. Qed.
#[export] Instance on_symmetric `{!Symmetric R} : Symmetric (on R f).
Proof. GUARD_TC. rewrite /on. by intros ?. Qed.
#[export] Instance on_asymmetric `{!Asymmetric R} : Asymmetric (on R f).
Proof. GUARD_TC. rewrite /on. intros ??. apply: asymmetry. Qed.
#[export] Instance on_transitive `{!Transitive R} : Transitive (on R f).
Proof. GUARD_TC. rewrite /on. by intros ???; etrans. Qed.
Proof. GUARD_TC. rewrite /on. by intros ?. Qed.
#[export] Instance on_irreflexive `{!Irreflexive R} : Irreflexive (on R f).
Proof. GUARD_TC. rewrite /on. by intros ??%irreflexivity. Qed.
#[export] Instance on_symmetric `{!Symmetric R} : Symmetric (on R f).
Proof. GUARD_TC. rewrite /on. by intros ?. Qed.
#[export] Instance on_asymmetric `{!Asymmetric R} : Asymmetric (on R f).
Proof. GUARD_TC. rewrite /on. intros ??. apply: asymmetry. Qed.
#[export] Instance on_transitive `{!Transitive R} : Transitive (on R f).
Proof. GUARD_TC. rewrite /on. by intros ???; etrans. Qed.
#[export] Instance on_equivalence `{!Equivalence R} : Equivalence (on R f).
Proof. GUARD_TC. split; apply _. Qed.
#[export] Instance on_preorder `{!PreOrder R} : PreOrder (on R f).
Proof. GUARD_TC. split; apply _. Qed.
#[export] Instance on_per `{!RelationClasses.PER R} : RelationClasses.PER (on R f).
Proof. GUARD_TC. split; apply _. Qed.
#[export] Instance on_strict_order `{!StrictOrder R} : StrictOrder (on R f).
Proof. GUARD_TC. split; apply _. Qed.
Proof. GUARD_TC. split; apply _. Qed.
#[export] Instance on_preorder `{!PreOrder R} : PreOrder (on R f).
Proof. GUARD_TC. split; apply _. Qed.
#[export] Instance on_per `{!RelationClasses.PER R} : RelationClasses.PER (on R f).
Proof. GUARD_TC. split; apply _. Qed.
#[export] Instance on_strict_order `{!StrictOrder R} : StrictOrder (on R f).
Proof. GUARD_TC. split; apply _. Qed.
#[export] Instance on_antisymm
(S : relation B) `{!AntiSymm S R} :
AntiSymm (on S f) (on R f) | 100.
Proof. GUARD_TC. rewrite /on. intros ??. apply: anti_symm. Qed.
(S : relation B) `{!AntiSymm S R} :
AntiSymm (on S f) (on R f) | 100.
Proof. GUARD_TC. rewrite /on. intros ??. apply: anti_symm. Qed.
Needed to lift PartialOrder
#[export] Instance on_antisymm_eq_inj
`{!AntiSymm (=) R} `{!Inj eq eq f} :
AntiSymm (=) (on R f).
Proof. GUARD_TC. rewrite /on. intros ????. apply (inj f). exact: anti_symm. Qed.
`{!AntiSymm (=) R} `{!Inj eq eq f} :
AntiSymm (=) (on R f).
Proof. GUARD_TC. rewrite /on. intros ????. apply (inj f). exact: anti_symm. Qed.
Needed to lift TotalOrder
#[export] Instance on_trichotomy
`{!Trichotomy R} `{!Inj eq eq f} :
Trichotomy (on R f).
Proof. GUARD_TC. rewrite /on. intros ??. rewrite -(inj_iff f). apply: trichotomy. Qed.
#[export, refine] Instance on_trichotomyT
`{!TrichotomyT R} `{!Inj eq eq f} :
TrichotomyT (on R f) := fun x y =>
match trichotomyT R (f x) (f y) with
| inleft (left H) => inleft (left H)
| inleft (right H) => inleft (right _)
| inright H => inright H
end.
Proof. abstract (apply (inj f _ _ H)). Defined.
`{!Trichotomy R} `{!Inj eq eq f} :
Trichotomy (on R f).
Proof. GUARD_TC. rewrite /on. intros ??. rewrite -(inj_iff f). apply: trichotomy. Qed.
#[export, refine] Instance on_trichotomyT
`{!TrichotomyT R} `{!Inj eq eq f} :
TrichotomyT (on R f) := fun x y =>
match trichotomyT R (f x) (f y) with
| inleft (left H) => inleft (left H)
| inleft (right H) => inleft (right _)
| inright H => inright H
end.
Proof. abstract (apply (inj f _ _ H)). Defined.
#[export] Instance on_partial_order `{!PartialOrder R} `{!Inj eq eq f} : PartialOrder (on R f).
Proof. GUARD_TC. split; apply _. Qed.
#[export] Instance on_total_order `{!TotalOrder R} `{!Inj eq eq f} : TotalOrder (on R f).
Proof. GUARD_TC. split; rewrite -?[strict (on R f)]/(on (strict R) f); apply _. Qed.
End on_props.
End on_props.
#[global] Typeclasses Opaque option.on.
Proof. GUARD_TC. split; apply _. Qed.
#[export] Instance on_total_order `{!TotalOrder R} `{!Inj eq eq f} : TotalOrder (on R f).
Proof. GUARD_TC. split; rewrite -?[strict (on R f)]/(on (strict R) f); apply _. Qed.
End on_props.
End on_props.
#[global] Typeclasses Opaque option.on.
TODO: Consider calling this
option.Rleq
or option.leq
Variant Roption_leq {A} (R : relation A) : relation (option A) :=
| Rleq_None {x} : Roption_leq R None x
| Rleq_Some {x y} (_ : R x y) : Roption_leq R (Some x) (Some y).
Section Roption_leq.
Context {A : Type}.
Implicit Type (R : relation A) (ox oy : option A) (x y : A).
#[local] Hint Constructors Roption_leq : core.
Lemma Roption_leq_option_relation {R ox oy} :
Roption_leq R ox oy <-> option_relation R (const False) (const True) ox oy.
Proof. destruct ox, oy; simpl; split; try inversion 1; naive_solver. Qed.
Lemma Roption_leq_Some_l_inv {R x oy} :
Roption_leq R (Some x) oy <-> ∃ y, oy = Some y ∧ R x y.
Proof. split; inversion 1; naive_solver. Qed.
Lemma Roption_leq_None_inv {R oy} :
Roption_leq R None oy <-> True.
Proof. split; inversion 1; naive_solver. Qed.
Lemma Roption_leq_inv_l_Some_eq {R ox oy} :
Roption_leq R ox oy <-> forall x, ox = Some x -> exists y, oy = Some y /\ R x y.
Proof. split. by inversion_clear 1; naive_solver. by destruct ox; naive_solver. Qed.
Lemma Roption_leq_inv_l_Some {R ox oy} :
Roption_leq R ox oy <->
match ox with
| None => True
| Some x => exists y, oy = Some y /\ R x y
end.
Proof. rewrite Roption_leq_inv_l_Some_eq; destruct ox; naive_solver. Qed.
Lemma Roption_leq_equiv R {ox oy} :
Roption_leq R ox oy <->
match ox, oy with
| None, _ => True
| Some x, None => False
| Some x, Some y => R x y
end.
Proof. split. by inversion_clear 1. by destruct ox, oy; naive_solver. Qed.
Lemma Roption_leq_eq_equiv {R ox oy} :
Roption_leq eq ox oy <-> forall a, ox = Some a -> oy = Some a.
Proof. rewrite Roption_leq_equiv; by destruct ox, oy; naive_solver. Qed.
End Roption_leq.
mlock Definition some_Forall2 {A} (R : relation A) (oa1 oa2 : option A) :=
is_Some oa1 ∧ is_Some oa2 ∧ option_Forall2 R oa1 oa2.
#[global] Arguments some_Forall2 {A} _ _ _ : assert.
(* ^^ Necessary to workaround mlock bugs. *)
Section some_Forall2.
Context `{R : relation A}.
(* [global] Instance some_Forall2_reflexive `{!Reflexive R}: Reflexive (some_Forall2 R). Proof. rewrite some_Forall2.unlock. intros ?. Qed. *)
#[global] Instance some_Forall2_symmetric `{!Symmetric R}: Symmetric (some_Forall2 R).
Proof. GUARD_TC. rewrite some_Forall2.unlock. intros ?; naive_solver. Qed.
#[global] Instance some_Forall2_transitive `{!Transitive R}: Transitive (some_Forall2 R).
Proof. GUARD_TC. rewrite some_Forall2.unlock. intros ?; intuition idtac. by etrans. Qed.
#[global] Instance some_Forall2_per `{!RelationClasses.PER R} : RelationClasses.PER (some_Forall2 R).
Proof. GUARD_TC. split; apply _. Qed.
Lemma some_Forall2_iff oa1 oa2 :
some_Forall2 R oa1 oa2 ↔
∃ (a1 a2 : A), oa1 = Some a1 ∧ oa2 = Some a2 ∧ R a1 a2.
Proof.
rewrite some_Forall2.unlock; split.
{ destruct 1 as ([??] & [??] & Hop); inversion Hop; naive_solver. }
destruct 1 as (? & ? & -> & -> & ?); split_and!; by econstructor.
Qed.
#[global, refine] Instance option_Forall2_decision
`{EqDecision A} `{!RelDecision R} :
RelDecision (option_Forall2 R) :=
fun oa1 oa2 =>
match oa1, oa2 with
| None, None => left _
| Some a1, Some a2 => cast_if (decide (R a1 a2))
| _, _ => right _
end.
Proof.
all: abstract (intros; by [inversion_clear 1 | constructor]).
Defined.
#[global, refine] Instance some_Forall2_decision `{EqDecision A} `{!RelDecision R} :
RelDecision (some_Forall2 R) :=
λ oa1 oa2, cast_if (decide (is_Some oa1 ∧ is_Some oa2 ∧ option_Forall2 R oa1 oa2)).
Proof. all: abstract (by rewrite some_Forall2.unlock). Defined.
End some_Forall2.
Section some_Forall2_eq.
Context {A : Type}.
Lemma some_Forall2_eq_iff (oa1 oa2 : option A) :
some_Forall2 eq oa1 oa2 ↔
∃ (a : A), oa1 = Some a ∧ oa2 = Some a.
Proof. rewrite some_Forall2_iff; naive_solver. Qed.
End some_Forall2_eq.
| Rleq_None {x} : Roption_leq R None x
| Rleq_Some {x y} (_ : R x y) : Roption_leq R (Some x) (Some y).
Section Roption_leq.
Context {A : Type}.
Implicit Type (R : relation A) (ox oy : option A) (x y : A).
#[local] Hint Constructors Roption_leq : core.
Lemma Roption_leq_option_relation {R ox oy} :
Roption_leq R ox oy <-> option_relation R (const False) (const True) ox oy.
Proof. destruct ox, oy; simpl; split; try inversion 1; naive_solver. Qed.
Lemma Roption_leq_Some_l_inv {R x oy} :
Roption_leq R (Some x) oy <-> ∃ y, oy = Some y ∧ R x y.
Proof. split; inversion 1; naive_solver. Qed.
Lemma Roption_leq_None_inv {R oy} :
Roption_leq R None oy <-> True.
Proof. split; inversion 1; naive_solver. Qed.
Lemma Roption_leq_inv_l_Some_eq {R ox oy} :
Roption_leq R ox oy <-> forall x, ox = Some x -> exists y, oy = Some y /\ R x y.
Proof. split. by inversion_clear 1; naive_solver. by destruct ox; naive_solver. Qed.
Lemma Roption_leq_inv_l_Some {R ox oy} :
Roption_leq R ox oy <->
match ox with
| None => True
| Some x => exists y, oy = Some y /\ R x y
end.
Proof. rewrite Roption_leq_inv_l_Some_eq; destruct ox; naive_solver. Qed.
Lemma Roption_leq_equiv R {ox oy} :
Roption_leq R ox oy <->
match ox, oy with
| None, _ => True
| Some x, None => False
| Some x, Some y => R x y
end.
Proof. split. by inversion_clear 1. by destruct ox, oy; naive_solver. Qed.
Lemma Roption_leq_eq_equiv {R ox oy} :
Roption_leq eq ox oy <-> forall a, ox = Some a -> oy = Some a.
Proof. rewrite Roption_leq_equiv; by destruct ox, oy; naive_solver. Qed.
End Roption_leq.
mlock Definition some_Forall2 {A} (R : relation A) (oa1 oa2 : option A) :=
is_Some oa1 ∧ is_Some oa2 ∧ option_Forall2 R oa1 oa2.
#[global] Arguments some_Forall2 {A} _ _ _ : assert.
(* ^^ Necessary to workaround mlock bugs. *)
Section some_Forall2.
Context `{R : relation A}.
(* [global] Instance some_Forall2_reflexive `{!Reflexive R}: Reflexive (some_Forall2 R). Proof. rewrite some_Forall2.unlock. intros ?. Qed. *)
#[global] Instance some_Forall2_symmetric `{!Symmetric R}: Symmetric (some_Forall2 R).
Proof. GUARD_TC. rewrite some_Forall2.unlock. intros ?; naive_solver. Qed.
#[global] Instance some_Forall2_transitive `{!Transitive R}: Transitive (some_Forall2 R).
Proof. GUARD_TC. rewrite some_Forall2.unlock. intros ?; intuition idtac. by etrans. Qed.
#[global] Instance some_Forall2_per `{!RelationClasses.PER R} : RelationClasses.PER (some_Forall2 R).
Proof. GUARD_TC. split; apply _. Qed.
Lemma some_Forall2_iff oa1 oa2 :
some_Forall2 R oa1 oa2 ↔
∃ (a1 a2 : A), oa1 = Some a1 ∧ oa2 = Some a2 ∧ R a1 a2.
Proof.
rewrite some_Forall2.unlock; split.
{ destruct 1 as ([??] & [??] & Hop); inversion Hop; naive_solver. }
destruct 1 as (? & ? & -> & -> & ?); split_and!; by econstructor.
Qed.
#[global, refine] Instance option_Forall2_decision
`{EqDecision A} `{!RelDecision R} :
RelDecision (option_Forall2 R) :=
fun oa1 oa2 =>
match oa1, oa2 with
| None, None => left _
| Some a1, Some a2 => cast_if (decide (R a1 a2))
| _, _ => right _
end.
Proof.
all: abstract (intros; by [inversion_clear 1 | constructor]).
Defined.
#[global, refine] Instance some_Forall2_decision `{EqDecision A} `{!RelDecision R} :
RelDecision (some_Forall2 R) :=
λ oa1 oa2, cast_if (decide (is_Some oa1 ∧ is_Some oa2 ∧ option_Forall2 R oa1 oa2)).
Proof. all: abstract (by rewrite some_Forall2.unlock). Defined.
End some_Forall2.
Section some_Forall2_eq.
Context {A : Type}.
Lemma some_Forall2_eq_iff (oa1 oa2 : option A) :
some_Forall2 eq oa1 oa2 ↔
∃ (a : A), oa1 = Some a ∧ oa2 = Some a.
Proof. rewrite some_Forall2_iff; naive_solver. Qed.
End some_Forall2_eq.
Definition same_property `(obs : A → option B) :=
option.on (some_Forall2 eq) obs.
Section same_property.
Context `{obs : A → option B}.
(* Lift #[global] and #[export] instances from on_props before making it
opaque. *)
#[global] Instance same_property_decision `{EqDecision B} :
RelDecision (same_property obs) := _.
Section with_on_props.
Import on_props.
#[global] Instance same_property_per : RelationClasses.PER (same_property obs) := _.
End with_on_props.
#[global] Typeclasses Opaque same_property.
#[global] Instance: RewriteRelation (same_property obs) := {}.
Lemma same_property_iff a1 a2 :
same_property obs a1 a2 ↔
∃ (b : B), obs a1 = Some b ∧ obs a2 = Some b.
Proof. by rewrite /same_property /option.on some_Forall2_eq_iff. Qed.
Lemma same_property_intro a1 a2 b :
obs a1 = Some b -> obs a2 = Some b -> same_property obs a1 a2.
Proof. rewrite same_property_iff. eauto. Qed.
Lemma same_property_reflexive_equiv a :
is_Some (obs a) ↔ same_property obs a a.
Proof. rewrite same_property_iff /is_Some. naive_solver. Qed.
Lemma same_property_partial_reflexive a b :
obs a = Some b → same_property obs a a.
Proof. rewrite -same_property_reflexive_equiv. naive_solver. Qed.
End same_property.
Section add_opt.
Definition add_opt (oz1 oz2 : option Z) : option Z := liftM2 Z.add oz1 oz2.
#[global] Instance add_opt_inj a : Inj eq eq (add_opt (Some a)).
Proof.
rewrite /add_opt => -[b1|] [b2|] // [?]. f_equal. lia.
Qed.
End add_opt.
Lemma option_list_nil {A} (x : option A) : option_list x = [] -> x = None.
Proof. case: x => //=. Qed.
option.on (some_Forall2 eq) obs.
Section same_property.
Context `{obs : A → option B}.
(* Lift #[global] and #[export] instances from on_props before making it
opaque. *)
#[global] Instance same_property_decision `{EqDecision B} :
RelDecision (same_property obs) := _.
Section with_on_props.
Import on_props.
#[global] Instance same_property_per : RelationClasses.PER (same_property obs) := _.
End with_on_props.
#[global] Typeclasses Opaque same_property.
#[global] Instance: RewriteRelation (same_property obs) := {}.
Lemma same_property_iff a1 a2 :
same_property obs a1 a2 ↔
∃ (b : B), obs a1 = Some b ∧ obs a2 = Some b.
Proof. by rewrite /same_property /option.on some_Forall2_eq_iff. Qed.
Lemma same_property_intro a1 a2 b :
obs a1 = Some b -> obs a2 = Some b -> same_property obs a1 a2.
Proof. rewrite same_property_iff. eauto. Qed.
Lemma same_property_reflexive_equiv a :
is_Some (obs a) ↔ same_property obs a a.
Proof. rewrite same_property_iff /is_Some. naive_solver. Qed.
Lemma same_property_partial_reflexive a b :
obs a = Some b → same_property obs a a.
Proof. rewrite -same_property_reflexive_equiv. naive_solver. Qed.
End same_property.
Section add_opt.
Definition add_opt (oz1 oz2 : option Z) : option Z := liftM2 Z.add oz1 oz2.
#[global] Instance add_opt_inj a : Inj eq eq (add_opt (Some a)).
Proof.
rewrite /add_opt => -[b1|] [b2|] // [?]. f_equal. lia.
Qed.
End add_opt.
Lemma option_list_nil {A} (x : option A) : option_list x = [] -> x = None.
Proof. case: x => //=. Qed.
Forcing
Definition force_some {T : Set} (o : option T) : Set :=
match o with
| Some _ => T
| None => unit
end.
Definition get_some {T : Set} (o : option T) : force_some o :=
match o as o return force_some o with
| Some t => t
| None => tt
end.
#[deprecated(since="20240317", note="Use [option.on].")]
Notation on := option.on.