bedrock.prelude.option

(*
 * Copyright (c) 2020-2024 BedRock Systems, Inc.
 * This software is distributed under the terms of the BedRock Open-Source License.
 * See the LICENSE-BedRock file in the repository root for details.
 *)

(*
 * The following code contains code derived from code original to the
 * stdpp project. That original code is
 *
 *        Copyright stdpp developers and contributors
 *
 * and used according to the following license.
 *
 *        SPDX-License-Identifier: BSD-3-Clause
 *
 * Original stdpp License:
 * https://gitlab.mpi-sws.org/iris/stdpp/-/blob/5415ad3003fd4b587a2189ddc2cc29c1bd9a9999/LICENSE
 *)


Require Import elpi.apps.locker.locker.
Require Import bedrock.prelude.base.
Require Import bedrock.prelude.bool.

Module option.
  Definition existsb {A} (f : A -> bool) (m : option A) : bool :=
    if m is Some x then f x else false.

Haskell's Data.Function.on (https://hackage.haskell.org/package/base-4.17.0.0/docs/Data-Function.htmlv:on). Examples: - Lift relation [R] by precomposing with function [f] (with [C := Prop]. We provide theory specialized to this use-case.
  Definition on {A B C} (R : B -> B -> C) (f : A -> B) (x y : A) : C :=
    R (f x) (f y).
End option.

Boolean version of stdpp's is_Some
Definition isSome {A} (m : option A) : bool :=
  if m is Some _ then true else false.

Lemma isSomeP {A} {m : option A} : reflect (is_Some m) (isSome m).
Proof. destruct m; cbn; constructor. by eexists. exact: is_Some_None. Qed.

Theory for is_Some_proj

@stdpp.option.is_Some_proj A mx P extracts the element of type A from mx knowing that mx is not a None.
The theory for is_Some_proj is simply is_Some_proj_eq, which can be used in combination with Some_inj to switch between A and option A.
Lemma is_Some_proj_eq {A : Type} {mx : option A} (P : is_Some mx) :
  mx = Some (is_Some_proj P).
Proof. rewrite /is_Some_proj. case_match; [done|by destruct P]. Qed.

Preorder properties lift through on. Only import locally when declaring specialized instances! These instances can lead to divergence of setoid rewriting, so they're only available when importing on_props.
Module on_props.
Section on_props.
  Import option.

  Context {A B : Type} {f : A -> B}.
  (* We use both R and strict R *)
  Implicit Type (R : relation B).

  (* We can safely make this global. *)
  #[global] Instance on_decidable `{!RelDecision R} : RelDecision (on R f).
  Proof. GUARD_TC. rewrite /on => ??. apply _. Defined.

Lift basic relation typeclasses from RelationClasses

  #[export] Instance on_reflexive `{!Reflexive R} : Reflexive (on R f).
  Proof. GUARD_TC. rewrite /on. by intros ?. Qed.
  #[export] Instance on_irreflexive `{!Irreflexive R} : Irreflexive (on R f).
  Proof. GUARD_TC. rewrite /on. by intros ??%irreflexivity. Qed.

  #[export] Instance on_symmetric `{!Symmetric R} : Symmetric (on R f).
  Proof. GUARD_TC. rewrite /on. by intros ?. Qed.
  #[export] Instance on_asymmetric `{!Asymmetric R} : Asymmetric (on R f).
  Proof. GUARD_TC. rewrite /on. intros ??. apply: asymmetry. Qed.

  #[export] Instance on_transitive `{!Transitive R} : Transitive (on R f).
  Proof. GUARD_TC. rewrite /on. by intros ???; etrans. Qed.

Lift bundled relation typeclasses from RelationClasses

  #[export] Instance on_equivalence `{!Equivalence R} : Equivalence (on R f).
  Proof. GUARD_TC. split; apply _. Qed.
  #[export] Instance on_preorder `{!PreOrder R} : PreOrder (on R f).
  Proof. GUARD_TC. split; apply _. Qed.
  #[export] Instance on_per `{!RelationClasses.PER R} : RelationClasses.PER (on R f).
  Proof. GUARD_TC. split; apply _. Qed.
  #[export] Instance on_strict_order `{!StrictOrder R} : StrictOrder (on R f).
  Proof. GUARD_TC. split; apply _. Qed.

Lift basic relation typeclasses from stdpp.base

  #[export] Instance on_antisymm
      (S : relation B) `{!AntiSymm S R} :
    AntiSymm (on S f) (on R f) | 100.
  Proof. GUARD_TC. rewrite /on. intros ??. apply: anti_symm. Qed.

Needed to lift PartialOrder
  #[export] Instance on_antisymm_eq_inj
      `{!AntiSymm (=) R} `{!Inj eq eq f} :
    AntiSymm (=) (on R f).
  Proof. GUARD_TC. rewrite /on. intros ????. apply (inj f). exact: anti_symm. Qed.

Needed to lift TotalOrder
  #[export] Instance on_trichotomy
      `{!Trichotomy R} `{!Inj eq eq f} :
    Trichotomy (on R f).
  Proof. GUARD_TC. rewrite /on. intros ??. rewrite -(inj_iff f). apply: trichotomy. Qed.

  #[export, refine] Instance on_trichotomyT
      `{!TrichotomyT R} `{!Inj eq eq f} :
    TrichotomyT (on R f) := fun x y =>
      match trichotomyT R (f x) (f y) with
      | inleft (left H) => inleft (left H)
      | inleft (right H) => inleft (right _)
      | inright H => inright H
      end.
  Proof. abstract (apply (inj f _ _ H)). Defined.

Lift bundled relation typeclasses from stdpp.base

  #[export] Instance on_partial_order `{!PartialOrder R} `{!Inj eq eq f} : PartialOrder (on R f).
  Proof. GUARD_TC. split; apply _. Qed.

  #[export] Instance on_total_order `{!TotalOrder R} `{!Inj eq eq f} : TotalOrder (on R f).
  Proof. GUARD_TC. split; rewrite -?[strict (on R f)]/(on (strict R) f); apply _. Qed.
End on_props.
End on_props.
#[global] Typeclasses Opaque option.on.

TODO: Consider calling this option.Rleq or option.leq
Variant Roption_leq {A} (R : relation A) : relation (option A) :=
| Rleq_None {x} : Roption_leq R None x
| Rleq_Some {x y} (_ : R x y) : Roption_leq R (Some x) (Some y).

Section Roption_leq.
  Context {A : Type}.
  Implicit Type (R : relation A) (ox oy : option A) (x y : A).

  #[local] Hint Constructors Roption_leq : core.

  Lemma Roption_leq_option_relation {R ox oy} :
    Roption_leq R ox oy <-> option_relation R (const False) (const True) ox oy.
  Proof. destruct ox, oy; simpl; split; try inversion 1; naive_solver. Qed.

  Lemma Roption_leq_Some_l_inv {R x oy} :
    Roption_leq R (Some x) oy <-> y, oy = Some y R x y.
  Proof. split; inversion 1; naive_solver. Qed.
  Lemma Roption_leq_None_inv {R oy} :
    Roption_leq R None oy <-> True.
  Proof. split; inversion 1; naive_solver. Qed.

  Lemma Roption_leq_inv_l_Some_eq {R ox oy} :
    Roption_leq R ox oy <-> forall x, ox = Some x -> exists y, oy = Some y /\ R x y.
  Proof. split. by inversion_clear 1; naive_solver. by destruct ox; naive_solver. Qed.

  Lemma Roption_leq_inv_l_Some {R ox oy} :
    Roption_leq R ox oy <->
    match ox with
    | None => True
    | Some x => exists y, oy = Some y /\ R x y
    end.
  Proof. rewrite Roption_leq_inv_l_Some_eq; destruct ox; naive_solver. Qed.

  Lemma Roption_leq_equiv R {ox oy} :
    Roption_leq R ox oy <->
    match ox, oy with
    | None, _ => True
    | Some x, None => False
    | Some x, Some y => R x y
    end.
  Proof. split. by inversion_clear 1. by destruct ox, oy; naive_solver. Qed.

  Lemma Roption_leq_eq_equiv {R ox oy} :
    Roption_leq eq ox oy <-> forall a, ox = Some a -> oy = Some a.
  Proof. rewrite Roption_leq_equiv; by destruct ox, oy; naive_solver. Qed.

End Roption_leq.

mlock Definition some_Forall2 {A} (R : relation A) (oa1 oa2 : option A) :=
  is_Some oa1 is_Some oa2 option_Forall2 R oa1 oa2.
#[global] Arguments some_Forall2 {A} _ _ _ : assert.
(* ^^ Necessary to workaround mlock bugs. *)

Section some_Forall2.
  Context `{R : relation A}.

  (* [global] Instance some_Forall2_reflexive `{!Reflexive R}: Reflexive (some_Forall2 R). Proof. rewrite some_Forall2.unlock. intros ?. Qed. *)
  #[global] Instance some_Forall2_symmetric `{!Symmetric R}: Symmetric (some_Forall2 R).
  Proof. GUARD_TC. rewrite some_Forall2.unlock. intros ?; naive_solver. Qed.
  #[global] Instance some_Forall2_transitive `{!Transitive R}: Transitive (some_Forall2 R).
  Proof. GUARD_TC. rewrite some_Forall2.unlock. intros ?; intuition idtac. by etrans. Qed.
  #[global] Instance some_Forall2_per `{!RelationClasses.PER R} : RelationClasses.PER (some_Forall2 R).
  Proof. GUARD_TC. split; apply _. Qed.

  Lemma some_Forall2_iff oa1 oa2 :
    some_Forall2 R oa1 oa2
     (a1 a2 : A), oa1 = Some a1 oa2 = Some a2 R a1 a2.
  Proof.
    rewrite some_Forall2.unlock; split.
    { destruct 1 as ([??] & [??] & Hop); inversion Hop; naive_solver. }
    destruct 1 as (? & ? & -> & -> & ?); split_and!; by econstructor.
  Qed.

  #[global, refine] Instance option_Forall2_decision
      `{EqDecision A} `{!RelDecision R} :
    RelDecision (option_Forall2 R) :=
    fun oa1 oa2 =>
      match oa1, oa2 with
      | None, None => left _
      | Some a1, Some a2 => cast_if (decide (R a1 a2))
      | _, _ => right _
      end.
  Proof.
    all: abstract (intros; by [inversion_clear 1 | constructor]).
  Defined.

  #[global, refine] Instance some_Forall2_decision `{EqDecision A} `{!RelDecision R} :
    RelDecision (some_Forall2 R) :=
    λ oa1 oa2, cast_if (decide (is_Some oa1 is_Some oa2 option_Forall2 R oa1 oa2)).
  Proof. all: abstract (by rewrite some_Forall2.unlock). Defined.
End some_Forall2.

Section some_Forall2_eq.
  Context {A : Type}.

  Lemma some_Forall2_eq_iff (oa1 oa2 : option A) :
    some_Forall2 eq oa1 oa2
     (a : A), oa1 = Some a oa2 = Some a.
  Proof. rewrite some_Forall2_iff; naive_solver. Qed.
End some_Forall2_eq.

Define a partial equivalence relation from an observation

Definition same_property `(obs : A option B) :=
  option.on (some_Forall2 eq) obs.
Section same_property.
  Context `{obs : A option B}.

  (* Lift #[global] and #[export] instances from on_props before making it
  opaque. *)

  #[global] Instance same_property_decision `{EqDecision B} :
    RelDecision (same_property obs) := _.

  Section with_on_props.
    Import on_props.
    #[global] Instance same_property_per : RelationClasses.PER (same_property obs) := _.
  End with_on_props.

  #[global] Typeclasses Opaque same_property.

  #[global] Instance: RewriteRelation (same_property obs) := {}.

  Lemma same_property_iff a1 a2 :
    same_property obs a1 a2
     (b : B), obs a1 = Some b obs a2 = Some b.
  Proof. by rewrite /same_property /option.on some_Forall2_eq_iff. Qed.

  Lemma same_property_intro a1 a2 b :
    obs a1 = Some b -> obs a2 = Some b -> same_property obs a1 a2.
  Proof. rewrite same_property_iff. eauto. Qed.

  Lemma same_property_reflexive_equiv a :
    is_Some (obs a) same_property obs a a.
  Proof. rewrite same_property_iff /is_Some. naive_solver. Qed.

  Lemma same_property_partial_reflexive a b :
    obs a = Some b same_property obs a a.
  Proof. rewrite -same_property_reflexive_equiv. naive_solver. Qed.
End same_property.

Section add_opt.
  Definition add_opt (oz1 oz2 : option Z) : option Z := liftM2 Z.add oz1 oz2.
  #[global] Instance add_opt_inj a : Inj eq eq (add_opt (Some a)).
  Proof.
    rewrite /add_opt => -[b1|] [b2|] // [?]. f_equal. lia.
  Qed.
End add_opt.

Lemma option_list_nil {A} (x : option A) : option_list x = [] -> x = None.
Proof. case: x => //=. Qed.

Forcing

The functions force_some and get_some ascribe a precise type to the function that extracts a value from an option. Because of the complex types, these should only be used for convenience wrappers that are meant to be written by user terms.
Example. Suppose that you have a complex data structure T that can be easily represented via a string. You might implement parse : string -> option T, and then provide a convenience wrapper mk : forall s : string, force_some (parse s). This allows users to write mk "foo,bar,baz" and they will get a type error if "foo,bar,baz" does not parse. This use case fits within the functionality of String Notation but this setup is a bit more general allowing parsing and checking invariants on other user-written data.

Definition force_some {T : Set} (o : option T) : Set :=
  match o with
  | Some _ => T
  | None => unit
  end.

Definition get_some {T : Set} (o : option T) : force_some o :=
  match o as o return force_some o with
  | Some t => t
  | None => tt
  end.

#[deprecated(since="20240317", note="Use [option.on].")]
Notation on := option.on.