bedrock.lang.cpp.bi.split_cfrac_tests
(*
* Copyright (c) 2022 BedRock Systems, Inc.
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import bedrock.prelude.base.
Require Import bedrock.lang.cpp.bi.split_cfrac.
#[local] Set Printing Coercions.
* Copyright (c) 2022 BedRock Systems, Inc.
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import bedrock.prelude.base.
Require Import bedrock.lang.cpp.bi.split_cfrac.
#[local] Set Printing Coercions.
Class Split (q q1 q2 : cQp.t) : Prop := split : SplitCFrac q q1 q2.
#[global] Hint Mode Split + + + : typeclass_instances.
#[global] Instance split_cfrac q q'1 q'2 q1 q2 :
SplitCFrac q q'1 q'2 -> TCEq q1 q'1 -> TCEq q2 q'2 -> Split q q1 q2 | 10.
Proof. by rewrite !TCEq_eq=>? ->->. Qed.
Section split.
#[global] Hint Mode Split + + + : typeclass_instances.
#[global] Instance split_cfrac q q'1 q'2 q1 q2 :
SplitCFrac q q'1 q'2 -> TCEq q1 q'1 -> TCEq q2 q'2 -> Split q q1 q2 | 10.
Proof. by rewrite !TCEq_eq=>? ->->. Qed.
Section split.
Splitting on cQp.add is immediate
Lemma immediate p q : Split (p + q) p q.
Proof. apply _. Abort.
Lemma immediate p q : Split (cmra.op p q) p q.
Proof. apply _. Abort.
Splitting on cQp.scale q preserves the factor q
Lemma subterm q q1 q2 :
Split (cQp.scale q (q1 + q2))
(cQp.scale q q1)
(cQp.scale q q2).
Proof. apply _. Abort.
Lemma subterm p q q1 q2 :
Split (cQp.scale p (cQp.scale q (q1 + q2)))
(cQp.scale p (cQp.scale q q1))
(cQp.scale p (cQp.scale q q2)).
Proof. apply _. Abort.
Otherwise, splitting works componentwise.
See ../../bi/split_andb_tests.v and ../../bi/split_frac_tests.v for
more examples of the underlying splits.
Lemma const q1 q2 : Split (cQp.const (q1 + q2)) (cQp.const q1) (cQp.const q2).
Proof. apply _. Abort.
Lemma mut q1 q2 : Split (cQp.mut (q1 + q2)) (cQp.mut q1) (cQp.mut q2).
Proof. apply _. Abort.
Lemma general c1 c2 q1 q2 :
Split (cQp.mk (c1 && c2) (q1 + q2)) (cQp.mk c1 q1) (cQp.mk c2 q2).
Proof. apply _. Abort.
Lemma mk c q :
let half := cQp.mk c (q / 2) in
Split (cQp.mk c q) half half.
Proof. cbn. apply _. Abort.
Lemma var cq :
let half := cQp.mk (cQp.is_const cq) (cQp.frac cq / 2) in
Split cq half half.
Proof. cbn. apply _. Abort.
Lemma scale_var q cq :
let half := cQp.scale q (cQp.mk (cQp.is_const cq) (cQp.frac cq / 2)) in
Split (cQp.scale q cq) half half.
Proof. cbn. apply _. Abort.
End split.
Class Combine (q1 q2 q : cQp.t) : Prop := combine : CombineCFrac q1 q2 q.
#[global] Hint Mode Combine + + + : typeclass_instances.
#[global] Instance combine_frac q1 q2 q' q :
CombineCFrac q1 q2 q' -> TCEq q q' -> Combine q1 q2 q | 10.
Proof. by rewrite TCEq_eq=>? ->. Qed.
Section combine.
#[global] Hint Mode Combine + + + : typeclass_instances.
#[global] Instance combine_frac q1 q2 q' q :
CombineCFrac q1 q2 q' -> TCEq q q' -> Combine q1 q2 q | 10.
Proof. by rewrite TCEq_eq=>? ->. Qed.
Section combine.
Combining terms of the form cQp.scale q _ preserves that
structure.
Lemma scale q q1 q2 :
Combine (cQp.scale q q1) (cQp.scale q q2) (cQp.scale q (q1 + q2)).
Proof. apply _. Abort.
Lemma scale p q q1 q2 :
Combine
(cQp.scale p (cQp.scale q q1))
(cQp.scale p (cQp.scale q q2))
(cQp.scale p (cQp.scale q (q1 + q2))).
Proof. apply _. Abort.
Lemma scale_mut q q1 q2 :
Combine (cQp.scale q (cQp.mut q1)) (cQp.scale q (cQp.mut q2))
(cQp.scale q (cQp.mut (q1 + q2))).
Proof. apply _. Abort.
Otherwise, combining works componentwise and then folds cQp.add
and eta reduces cQp.mk.
See ../../bi/split_andb_tests.v and ../../bi/split_frac_tests.v for
more examples of how components combine.
Lemma var q : Combine q q (q + q).
Proof. apply _. Abort.
Lemma var q1 q2 : Combine q1 q2 (q1 + q2).
Proof. apply _. Abort.
Lemma const q1 q2 : Combine (cQp.const q1) (cQp.const q2) (cQp.const (q1 + q2)).
Proof. apply _. Abort.
Lemma mut q1 q2 : Combine (cQp.mut q1) (cQp.mut q2) (cQp.mut (q1 + q2)).
Proof. apply _. Abort.
Lemma general c1 c2 q1 q2 :
Combine (cQp.mk c1 q1) (cQp.mk c2 q2) (cQp.mk (c1 && c2) (q1 + q2)).
Proof. apply _. Abort.
Lemma mk c q :
let half := cQp.mk c (q / 2) in
Combine half half (cQp.mk c q) .
Proof. cbn. apply _. Abort.
Lemma var cq :
let half := cQp.mk (cQp.is_const cq) (cQp.frac cq / 2) in
Combine half half cq.
Proof. cbn. apply _. Abort.
Lemma scale_var q cq :
let half := cQp.scale q (cQp.mk (cQp.is_const cq) (cQp.frac cq / 2)) in
Combine half half (cQp.scale q cq).
Proof. cbn. apply _. Abort.
End combine.