bedrock.lang.cpp.bi.split_cfrac
(*
* Copyright (c) 2022 BedRock Systems, Inc.
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Export bedrock.lang.cpp.algebra.cfrac.
Require Import bedrock.lang.bi.prelude.
Require Import bedrock.lang.bi.split_andb.
Require Import bedrock.lang.bi.split_frac.
Require Import bedrock.lang.proofmode.proofmode.
Import ChargeNotation.
#[local] Set Printing Coercions.
* Copyright (c) 2022 BedRock Systems, Inc.
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Export bedrock.lang.cpp.algebra.cfrac.
Require Import bedrock.lang.bi.prelude.
Require Import bedrock.lang.bi.split_andb.
Require Import bedrock.lang.bi.split_frac.
Require Import bedrock.lang.proofmode.proofmode.
Import ChargeNotation.
#[local] Set Printing Coercions.
Splitting and combining const/mutable fractional things
- cQpTC.IsConst, cQpTC.Frac normalizing projections from
- SplitCFrac, CombineCFrac split and combine terms of type cQp.t
Class IsConst (q : cQp.t) (b : bool) : Prop := is_const : cQp.is_const q = b.
#[global] Hint Mode IsConst + - : typeclass_instances.
#[global] Arguments IsConst : simpl never.
#[global] Arguments is_const _ {_ _} : assert.
Notation IS_CONST q b := (Cut (IsConst q b)) (only parsing).
#[global] Hint Mode IsConst + - : typeclass_instances.
#[global] Arguments IsConst : simpl never.
#[global] Arguments is_const _ {_ _} : assert.
Notation IS_CONST q b := (Cut (IsConst q b)) (only parsing).
Class Frac (cq : cQp.t) (q : Qp) : Prop := frac : cQp.frac cq = q.
#[global] Hint Mode Frac + - : typeclass_instances.
#[global] Arguments Frac : simpl never.
#[global] Arguments frac _ {_ _} : assert.
Notation FRAC q b := (Cut (Frac q b)) (only parsing).
#[global] Hint Mode Frac + - : typeclass_instances.
#[global] Arguments Frac : simpl never.
#[global] Arguments frac _ {_ _} : assert.
Notation FRAC q b := (Cut (Frac q b)) (only parsing).
#[global] Instance is_const_mk c q : IsConst (cQp.mk c q) c | 10.
Proof. done. Qed.
#[global] Instance is_const_scale q cq c :
IS_CONST cq c -> IsConst (cQp.scale q cq) c | 20.
Proof.
intros [?]. rewrite /IsConst.
by rewrite cQp.is_const_scale is_const.
Qed.
#[global] Instance is_const_add cq1 cq2 c1 c2 c :
IS_CONST cq1 c1 -> IS_CONST cq2 c2 -> CombineAndB c1 c2 c ->
IsConst (cq1 + cq2) c | 20.
Proof.
intros [?] [?] ?. rewrite /IsConst.
by rewrite cQp.is_const_add !is_const combine_andb.
Qed.
#[global] Instance is_const_var q : IsConst q (cQp.is_const q) | 50.
Proof. done. Qed.
#[global] Instance frac_mk c q : Frac (cQp.mk c q) q | 10.
Proof. done. Qed.
#[global] Instance frac_scale q1 q2 q cq :
FRAC cq q2 -> QpTC.MUL q1 q2 q ->
Frac (cQp.scale q1 cq) q | 20.
Proof.
intros [?] [?]. rewrite /Frac.
by rewrite cQp.frac_scale frac QpTC.mul.
Qed.
#[global] Instance frac_add cq1 cq2 q1 q2 q :
FRAC cq1 q1 -> FRAC cq2 q2 -> QpTC.ADD q1 q2 q ->
Frac (cq1 + cq2) q | 20.
Proof.
intros [?] [?] [?]. rewrite /Frac.
by rewrite cQp.frac_add !frac QpTC.add.
Qed.
#[global] Instance frac_var cq : Frac cq (cQp.frac cq) | 50.
Proof. done. Qed.
End cQpTC.
Splitting const/mutable fractions
Class SplitCFrac (cv cv1 cv2 : cQp.t) : Prop := split_cfrac : cv = cv1 + cv2.
#[global] Hint Mode SplitCFrac + - - : typeclass_instances.
#[global] Arguments SplitCFrac : simpl never.
#[global] Arguments split_cfrac _ {_ _ _} : assert.
Module split_cfrac.
#[global] Hint Mode SplitCFrac + - - : typeclass_instances.
#[global] Arguments SplitCFrac : simpl never.
#[global] Arguments split_cfrac _ {_ _ _} : assert.
Module split_cfrac.
We use this auxiliary judgment to Cut in SplitCFrac.
Class Split (q q1 q2 : cQp.t) : Prop := split : q = q1 + q2.
#[global] Hint Mode Split + - - : typeclass_instances.
#[global] Arguments Split : simpl never.
#[global] Arguments split _ {_ _ _} : assert.
Notation SPLIT q q1 q2 := (Cut (Split q q1 q2)) (only parsing).
#[global] Hint Mode Split + - - : typeclass_instances.
#[global] Arguments Split : simpl never.
#[global] Arguments split _ {_ _ _} : assert.
Notation SPLIT q q1 q2 := (Cut (Split q q1 q2)) (only parsing).
Splitting on cQp.add is immediate
#[global] Instance split_add q1 q2 : Split (q1 + q2) q1 q2 | 10.
Proof. done. Qed.
Goal forall q1 q2, Split (q1 ⋅ q2) q1 q2.
Proof. apply _. Abort.
Splitting on cQp.scale q preserves the factor q
#[global] Instance split_scale q cv cv1 cv2 :
SPLIT cv cv1 cv2 ->
Split (cQp.scale q cv) (cQp.scale q cv1) (cQp.scale q cv2) | 20.
Proof.
intros [?]. rewrite /Split.
by rewrite (split cv) cQp.scale_add_r.
Qed.
Default: Split componentwise
#[global] Instance split_parts cq c c1 c2 q q1 q2 :
cQpTC.IS_CONST cq c -> cQpTC.FRAC cq q ->
SplitAndB c c1 c2 -> SplitFrac q q1 q2 ->
Split cq (cQp.mk c1 q1) (cQp.mk c2 q2) | 50.
Proof.
intros [?] [?] ??. rewrite /Split cQp.add_eq/=.
rewrite (cQp.eta cq) cQpTC.is_const cQpTC.frac. by f_equal.
Qed.
End split_cfrac.
#[global] Instance split_cfrac_split cv cv1 cv2 :
split_cfrac.SPLIT cv cv1 cv2 -> SplitCFrac cv cv1 cv2 | 10.
Proof. by case. Qed.
Combining const/mutable fractions
Class CombineCFrac (q1 q2 q : cQp.t) : Prop := combine_cfrac : q1 + q2 = q.
#[global] Hint Mode CombineCFrac + + - : typeclass_instances.
#[global] Arguments CombineCFrac : simpl never.
#[global] Arguments combine_cfrac _ _ {_ _} : assert.
Module combine_cfrac.
#[global] Hint Mode CombineCFrac + + - : typeclass_instances.
#[global] Arguments CombineCFrac : simpl never.
#[global] Arguments combine_cfrac _ _ {_ _} : assert.
Module combine_cfrac.
Fold p q folds occurrences of cQp.add and eliminates occurrences
of eta-expanded cQp.mk in p to produce q.
Class Fold (p q : cQp.t) : Prop := fold : p = q.
#[global] Hint Mode Fold + - : typeclass_instances.
#[global] Arguments Fold : simpl never.
#[global] Arguments fold _ {_ _} : assert.
Notation FOLD p q := (Cut (Fold p q)) (only parsing).
#[global] Instance fold_eta q :
Fold (cQp.mk (cQp.is_const q) (cQp.frac q)) q | 10.
Proof. done. Qed.
#[global] Hint Mode Fold + - : typeclass_instances.
#[global] Arguments Fold : simpl never.
#[global] Arguments fold _ {_ _} : assert.
Notation FOLD p q := (Cut (Fold p q)) (only parsing).
#[global] Instance fold_eta q :
Fold (cQp.mk (cQp.is_const q) (cQp.frac q)) q | 10.
Proof. done. Qed.
Account for Qp.Add's q + q --> 2q
#[global] Instance fold_add_diag q :
Fold (cQp.mk (cQp.is_const q) (2 * cQp.frac q)) (q + q) | 10.
Proof.
rewrite /Fold cQp.add_eq.
by rewrite andb_diag Qp.add_diag.
Qed.
#[global] Instance fold_scale p q' q :
FOLD q' q ->
Fold (cQp.scale p q') (cQp.scale p q) | 20.
Proof.
intros [?]. rewrite /Fold. by rewrite (fold q').
Qed.
#[global] Instance fold_add p1 p2 q1 q2 :
FOLD p1 q1 -> FOLD p2 q2 ->
Fold (Reduce (cQp.add p1 p2)) (cQp.add q1 q2) | 20.
Proof.
intros [?] [?]. rewrite /Fold.
by rewrite (fold p1) (fold p2).
Qed.
#[global] Instance fold_skip q : Fold q q | 50.
Proof. done. Qed.
Fold (cQp.mk (cQp.is_const q) (2 * cQp.frac q)) (q + q) | 10.
Proof.
rewrite /Fold cQp.add_eq.
by rewrite andb_diag Qp.add_diag.
Qed.
#[global] Instance fold_scale p q' q :
FOLD q' q ->
Fold (cQp.scale p q') (cQp.scale p q) | 20.
Proof.
intros [?]. rewrite /Fold. by rewrite (fold q').
Qed.
#[global] Instance fold_add p1 p2 q1 q2 :
FOLD p1 q1 -> FOLD p2 q2 ->
Fold (Reduce (cQp.add p1 p2)) (cQp.add q1 q2) | 20.
Proof.
intros [?] [?]. rewrite /Fold.
by rewrite (fold p1) (fold p2).
Qed.
#[global] Instance fold_skip q : Fold q q | 50.
Proof. done. Qed.
We use this auxiliary judgment to Cut in CombineCFrac.
Class Combine (q1 q2 q : cQp.t) : Prop := combine : q1 + q2 = q.
#[global] Hint Mode Combine + + - : typeclass_instances.
#[global] Arguments Combine : simpl never.
#[global] Arguments combine _ _ {_ _} : assert.
Notation COMBINE q1 q2 q := (Cut (Combine q1 q2 q)) (only parsing).
#[global] Hint Mode Combine + + - : typeclass_instances.
#[global] Arguments Combine : simpl never.
#[global] Arguments combine _ _ {_ _} : assert.
Notation COMBINE q1 q2 q := (Cut (Combine q1 q2 q)) (only parsing).
Combining terms of the form cQp.scale p preserves that structure
#[global] Instance combine_scale p q1 q2 q :
COMBINE q1 q2 q ->
Combine (cQp.scale p q1) (cQp.scale p q2) (cQp.scale p q) | 20.
Proof.
intros [?]. rewrite /Combine.
by rewrite -cQp.scale_add_r combine.
Qed.
Default: Combine componentwise
#[global] Instance combine_parts cq1 cq2 cq c1 c2 c q1 q2 q :
cQpTC.IS_CONST cq1 c1 -> cQpTC.FRAC cq1 q1 ->
cQpTC.IS_CONST cq2 c2 -> cQpTC.FRAC cq2 q2 ->
CombineAndB c1 c2 c -> CombineFrac q1 q2 q -> FOLD (cQp.mk c q) cq ->
Combine cq1 cq2 cq | 50.
Proof.
intros [?] [?] [?] [?] ?? [<-]. rewrite /Combine cQp.add_eq.
rewrite !cQpTC.is_const !cQpTC.frac. by f_equal.
Qed.
End combine_cfrac.
#[global] Instance combine_cfrac_add q1 q2 q :
combine_cfrac.COMBINE q1 q2 q -> CombineCFrac q1 q2 q | 10.
Proof. by case. Qed.