bedrock.lang.bi.telescopes
(*
* Copyright (C) BedRock Systems Inc. 2020-21
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*
*)
Require Import bedrock.lang.algebra.telescopes.
Require Export iris.bi.telescopes.
Require Export bedrock.lang.bi.prelude.
Require iris.proofmode.class_instances.
Import ChargeNotation.
#[local] Set Universe Polymorphism.
#[local] Set Printing Universes.
#[local] Set Printing Coercions.
* Copyright (C) BedRock Systems Inc. 2020-21
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*
*)
Require Import bedrock.lang.algebra.telescopes.
Require Export iris.bi.telescopes.
Require Export bedrock.lang.bi.prelude.
Require iris.proofmode.class_instances.
Import ChargeNotation.
#[local] Set Universe Polymorphism.
#[local] Set Printing Universes.
#[local] Set Printing Coercions.
Analogues of bi_texist and bi_tforall, with extra universe
polymorphism and a slightly different interface.
Fixpoint tbi_exist@{X Z Y} {PROP : bi} {t : tele@{X}}
: forall (P : tele_fun@{X Z Y} t PROP), PROP :=
match t as t0 return ((t0 -t> PROP) → PROP) with
| [tele] => fun x : PROP => x
| @TeleS X binder =>
fun P : (∀ x : X, binder x -t> PROP) => Exists x : X, tbi_exist (P x)
end.
Fixpoint tbi_forall@{X Z Y} {PROP : bi} {t : tele@{X}}
: forall (P : tele_fun@{X Z Y} t PROP), PROP :=
match t as t0 return ((t0 -t> PROP) → PROP) with
| [tele] => fun x : PROP => x
| @TeleS X binder =>
fun P : (∀ x : X, binder x -t> PROP) => Forall x : X, tbi_forall (P x)
end.
: forall (P : tele_fun@{X Z Y} t PROP), PROP :=
match t as t0 return ((t0 -t> PROP) → PROP) with
| [tele] => fun x : PROP => x
| @TeleS X binder =>
fun P : (∀ x : X, binder x -t> PROP) => Exists x : X, tbi_exist (P x)
end.
Fixpoint tbi_forall@{X Z Y} {PROP : bi} {t : tele@{X}}
: forall (P : tele_fun@{X Z Y} t PROP), PROP :=
match t as t0 return ((t0 -t> PROP) → PROP) with
| [tele] => fun x : PROP => x
| @TeleS X binder =>
fun P : (∀ x : X, binder x -t> PROP) => Forall x : X, tbi_forall (P x)
end.
Small improvements to bi_tforall, bi_texist
#[global] Instance bi_tforall_mono' :
Proper (pointwise_relation _ (⊢) ==> (⊢)) (@bi_tforall PROP TT).
Proof. intros f1 f2 Hf. rewrite !bi_tforall_forall. solve_proper. Qed.
#[global] Instance bi_texist_mono' :
Proper (pointwise_relation _ (⊢) ==> (⊢)) (@bi_texist PROP TT).
Proof. intros f1 f2 Hf. rewrite !bi_texist_exist. solve_proper. Qed.
Proper (pointwise_relation _ (⊢) ==> (⊢)) (@bi_tforall PROP TT).
Proof. intros f1 f2 Hf. rewrite !bi_tforall_forall. solve_proper. Qed.
#[global] Instance bi_texist_mono' :
Proper (pointwise_relation _ (⊢) ==> (⊢)) (@bi_texist PROP TT).
Proof. intros f1 f2 Hf. rewrite !bi_texist_exist. solve_proper. Qed.
#[global] Instance bi_tforall_flip_mono' :
Proper (
pointwise_relation _ (flip (⊢)) ==>
(flip (⊢))
) (@bi_tforall PROP TT).
Proof. intros f1 f2 Hf. rewrite !bi_tforall_forall. solve_proper. Qed.
#[global] Instance bi_texist_flip_mono' :
Proper (pointwise_relation _ (⊢) ==> (⊢)) (@bi_texist PROP TT).
Proof. intros f1 f2 Hf. rewrite !bi_texist_exist. solve_proper. Qed.
End telescopes.
Section tele_fun_quantifiers.
Context {PROP : bi}.
Implicit Types t : tele.
Lemma tbi_exist_bi_texist {t} (P : t -t> PROP) : tbi_exist P -|- ∃.. x, tele_app P x.
Proof. induction t as [|?? IH]; simpl; first done. f_equiv=>x. by rewrite IH. Qed.
Lemma bi_texist_tbi_exist {t} (R : t -> PROP) : (∃.. x, R x) -|- tbi_exist (tele_bind R).
Proof. rewrite tbi_exist_bi_texist. f_equiv=>x. by rewrite tele_app_bind. Qed.
Proper (
pointwise_relation _ (flip (⊢)) ==>
(flip (⊢))
) (@bi_tforall PROP TT).
Proof. intros f1 f2 Hf. rewrite !bi_tforall_forall. solve_proper. Qed.
#[global] Instance bi_texist_flip_mono' :
Proper (pointwise_relation _ (⊢) ==> (⊢)) (@bi_texist PROP TT).
Proof. intros f1 f2 Hf. rewrite !bi_texist_exist. solve_proper. Qed.
End telescopes.
Section tele_fun_quantifiers.
Context {PROP : bi}.
Implicit Types t : tele.
Lemma tbi_exist_bi_texist {t} (P : t -t> PROP) : tbi_exist P -|- ∃.. x, tele_app P x.
Proof. induction t as [|?? IH]; simpl; first done. f_equiv=>x. by rewrite IH. Qed.
Lemma bi_texist_tbi_exist {t} (R : t -> PROP) : (∃.. x, R x) -|- tbi_exist (tele_bind R).
Proof. rewrite tbi_exist_bi_texist. f_equiv=>x. by rewrite tele_app_bind. Qed.
Avoid the preceding lemmas which would unduly constrain universe Y.
Lemma tbi_exist_exist@{X Z Y} {t : tele@{X}} (P : tele_fun@{X Z Y} t PROP) :
tbi_exist P -|- Exists x, tele_app P x.
Proof.
induction t as [|B bnd IH]; simpl; split'.
- by rewrite -(bi.exist_intro TargO).
- apply bi.exist_elim=>x. by rewrite (tele_arg_O_inv x).
- apply bi.exist_elim=>b. rewrite IH. apply bi.exist_elim=>ys.
by rewrite -(bi.exist_intro (TargS b ys)).
- apply bi.exist_elim=>ys. destruct (tele_arg_S_inv ys) as (b & arg & ->). simpl.
rewrite -(bi.exist_intro b) IH. by rewrite -(bi.exist_intro arg).
Qed.
Lemma tbi_exist_mono@{X Z Y} {t : tele@{X}} (P1 P2 : tele_fun@{X Z Y} t PROP) :
tele_fun_pointwise@{X Z Y} (⊢) P1 P2 -> tbi_exist P1 ⊢ tbi_exist P2.
Proof. intros. rewrite !tbi_exist_exist. solve_proper. Qed.
Lemma tbi_exist_ne@{X Z Y} {t : tele@{X}} n (P1 P2 : tele_fun@{X Z Y} t PROP) :
tele_fun_pointwise@{X Z Y} (dist n) P1 P2 ->
dist n (tbi_exist P1) (tbi_exist P2).
Proof. intros. rewrite !tbi_exist_exist. solve_proper. Qed.
Lemma tbi_exist_proper@{X Z Y} {t : tele@{X}} (P1 P2 : tele_fun@{X Z Y} t PROP) :
tele_fun_pointwise@{X Z Y} equiv P1 P2 ->
equiv (tbi_exist P1) (tbi_exist P2).
Proof. intros. rewrite !tbi_exist_exist. solve_proper. Qed.
Lemma tbi_forall_bi_tforall {t} (P : t -t> PROP) : tbi_forall P -|- ∀.. x, tele_app P x.
Proof. induction t as [|?? IH]; simpl; first done. f_equiv=>x. by rewrite IH. Qed.
Lemma bi_tforall_tbi_forall {t} (R : t -> PROP) : (∀.. x, R x) -|- tbi_forall (tele_bind R).
Proof. rewrite tbi_forall_bi_tforall. f_equiv=>x. by rewrite tele_app_bind. Qed.
Lemma tbi_forall_forall@{X Z Y} {t : tele@{X}} (P : tele_fun@{X Z Y} t PROP) :
tbi_forall P -|- Forall x, tele_app P x.
Proof.
induction t as [|B bnd IH]; simpl; split'.
- apply bi.forall_intro=>x. by rewrite tele_app_bind.
- by rewrite (bi.forall_elim TargO).
- apply bi.forall_intro=>ys. destruct (tele_arg_S_inv ys) as (b & arg & ->).
simpl. by rewrite (bi.forall_elim b) IH (bi.forall_elim arg).
- apply bi.forall_intro=>b. rewrite IH. apply bi.forall_intro=>ys.
by rewrite (bi.forall_elim (TargS b ys)).
Qed.
Lemma tbi_forall_mono@{X Z Y} {t : tele@{X}} (P1 P2 : tele_fun@{X Z Y} t PROP) :
tele_fun_pointwise@{X Z Y} (⊢) P1 P2 -> tbi_forall P1 ⊢ tbi_forall P2.
Proof. intros. rewrite !tbi_forall_forall. solve_proper. Qed.
Lemma tbi_forall_ne@{X Z Y} {t : tele@{X}} n (P1 P2 : tele_fun@{X Z Y} t PROP) :
tele_fun_pointwise@{X Z Y} (dist n) P1 P2 ->
dist n (tbi_forall P1) (tbi_forall P2).
Proof. intros. rewrite !tbi_forall_forall. solve_proper. Qed.
Lemma tbi_forall_proper@{X Z Y} {t : tele@{X}} (P1 P2 : tele_fun@{X Z Y} t PROP) :
tele_fun_pointwise@{X Z Y} equiv P1 P2 ->
equiv (tbi_forall P1) (tbi_forall P2).
Proof. intros. rewrite !tbi_forall_forall. solve_proper. Qed.
#[global] Instance: Params (@tbi_exist) 2 := {}.
#[global] Instance tbi_exist_ne' t : NonExpansive (@tbi_exist PROP t).
Proof. repeat intro. by apply tbi_exist_ne. Qed.
#[global] Instance tbi_exist_proper' t : Proper (equiv ==> equiv) (@tbi_exist PROP t).
Proof. repeat intro. by apply tbi_exist_proper. Qed.
#[global] Instance tbi_exist_mono' {t} :
Proper (tele_fun_pointwise (⊢) ==> (⊢)) (@tbi_exist PROP t).
Proof. repeat intro. by apply tbi_exist_mono. Qed.
#[global] Instance tbi_exist_flip_mono' {t} :
Proper (tele_fun_pointwise (⊢) --> flip (⊢)) (@tbi_exist PROP t).
Proof. repeat intro. by apply tbi_exist_mono. Qed.
#[global] Instance: Params (@tbi_forall) 2 := {}.
#[global] Instance tbi_forall_ne' t : NonExpansive (@tbi_forall PROP t).
Proof. repeat intro. by apply tbi_forall_ne. Qed.
#[global] Instance tbi_forall_proper' t : Proper (equiv ==> equiv) (@tbi_forall PROP t).
Proof. repeat intro. by apply tbi_forall_proper. Qed.
#[global] Instance tbi_forall_mono' {t} :
Proper (tele_fun_pointwise (⊢) ==> (⊢)) (@tbi_forall PROP t).
Proof. repeat intro. by apply tbi_forall_mono. Qed.
#[global] Instance tbi_forall_flip_mono' {t} :
Proper (tele_fun_pointwise (⊢) --> flip (⊢)) (@tbi_forall PROP t).
Proof. repeat intro. by apply tbi_forall_mono. Qed.
Section proofmode.
Import proofmode.classes.
#[global] Instance tbi_exist_into_exist t (P : t -> PROP) name :
AsIdentName P name -> IntoExist (tbi_exist (tele_bind P)) P name.
Proof.
rewrite /IntoExist=>?. rewrite tbi_exist_exist.
f_equiv=>x. by rewrite tele_app_bind.
Qed.
#[global] Instance tbi_exist_from_exist t (P : t -> PROP) :
FromExist (tbi_exist (tele_bind P)) P.
Proof.
rewrite /FromExist. rewrite tbi_exist_exist.
f_equiv=>x. by rewrite tele_app_bind.
Qed.
#[global] Instance tbi_forall_into_forall t (P : t -> PROP) :
IntoForall (tbi_forall (tele_bind P)) P.
Proof.
rewrite /IntoForall. rewrite tbi_forall_forall.
f_equiv=>x. by rewrite tele_app_bind.
Qed.
#[global] Instance tbi_forall_from_forall t (P : t -> PROP) name :
AsIdentName P name -> FromForall (tbi_forall (tele_bind P)) P name.
Proof.
rewrite /FromForall=>?. rewrite tbi_forall_forall.
f_equiv=>x. by rewrite tele_app_bind.
Qed.
End proofmode.
End tele_fun_quantifiers.
#[global] Hint Opaque tbi_exist tbi_forall : typeclass_instances.
tbi_exist P -|- Exists x, tele_app P x.
Proof.
induction t as [|B bnd IH]; simpl; split'.
- by rewrite -(bi.exist_intro TargO).
- apply bi.exist_elim=>x. by rewrite (tele_arg_O_inv x).
- apply bi.exist_elim=>b. rewrite IH. apply bi.exist_elim=>ys.
by rewrite -(bi.exist_intro (TargS b ys)).
- apply bi.exist_elim=>ys. destruct (tele_arg_S_inv ys) as (b & arg & ->). simpl.
rewrite -(bi.exist_intro b) IH. by rewrite -(bi.exist_intro arg).
Qed.
Lemma tbi_exist_mono@{X Z Y} {t : tele@{X}} (P1 P2 : tele_fun@{X Z Y} t PROP) :
tele_fun_pointwise@{X Z Y} (⊢) P1 P2 -> tbi_exist P1 ⊢ tbi_exist P2.
Proof. intros. rewrite !tbi_exist_exist. solve_proper. Qed.
Lemma tbi_exist_ne@{X Z Y} {t : tele@{X}} n (P1 P2 : tele_fun@{X Z Y} t PROP) :
tele_fun_pointwise@{X Z Y} (dist n) P1 P2 ->
dist n (tbi_exist P1) (tbi_exist P2).
Proof. intros. rewrite !tbi_exist_exist. solve_proper. Qed.
Lemma tbi_exist_proper@{X Z Y} {t : tele@{X}} (P1 P2 : tele_fun@{X Z Y} t PROP) :
tele_fun_pointwise@{X Z Y} equiv P1 P2 ->
equiv (tbi_exist P1) (tbi_exist P2).
Proof. intros. rewrite !tbi_exist_exist. solve_proper. Qed.
Lemma tbi_forall_bi_tforall {t} (P : t -t> PROP) : tbi_forall P -|- ∀.. x, tele_app P x.
Proof. induction t as [|?? IH]; simpl; first done. f_equiv=>x. by rewrite IH. Qed.
Lemma bi_tforall_tbi_forall {t} (R : t -> PROP) : (∀.. x, R x) -|- tbi_forall (tele_bind R).
Proof. rewrite tbi_forall_bi_tforall. f_equiv=>x. by rewrite tele_app_bind. Qed.
Lemma tbi_forall_forall@{X Z Y} {t : tele@{X}} (P : tele_fun@{X Z Y} t PROP) :
tbi_forall P -|- Forall x, tele_app P x.
Proof.
induction t as [|B bnd IH]; simpl; split'.
- apply bi.forall_intro=>x. by rewrite tele_app_bind.
- by rewrite (bi.forall_elim TargO).
- apply bi.forall_intro=>ys. destruct (tele_arg_S_inv ys) as (b & arg & ->).
simpl. by rewrite (bi.forall_elim b) IH (bi.forall_elim arg).
- apply bi.forall_intro=>b. rewrite IH. apply bi.forall_intro=>ys.
by rewrite (bi.forall_elim (TargS b ys)).
Qed.
Lemma tbi_forall_mono@{X Z Y} {t : tele@{X}} (P1 P2 : tele_fun@{X Z Y} t PROP) :
tele_fun_pointwise@{X Z Y} (⊢) P1 P2 -> tbi_forall P1 ⊢ tbi_forall P2.
Proof. intros. rewrite !tbi_forall_forall. solve_proper. Qed.
Lemma tbi_forall_ne@{X Z Y} {t : tele@{X}} n (P1 P2 : tele_fun@{X Z Y} t PROP) :
tele_fun_pointwise@{X Z Y} (dist n) P1 P2 ->
dist n (tbi_forall P1) (tbi_forall P2).
Proof. intros. rewrite !tbi_forall_forall. solve_proper. Qed.
Lemma tbi_forall_proper@{X Z Y} {t : tele@{X}} (P1 P2 : tele_fun@{X Z Y} t PROP) :
tele_fun_pointwise@{X Z Y} equiv P1 P2 ->
equiv (tbi_forall P1) (tbi_forall P2).
Proof. intros. rewrite !tbi_forall_forall. solve_proper. Qed.
#[global] Instance: Params (@tbi_exist) 2 := {}.
#[global] Instance tbi_exist_ne' t : NonExpansive (@tbi_exist PROP t).
Proof. repeat intro. by apply tbi_exist_ne. Qed.
#[global] Instance tbi_exist_proper' t : Proper (equiv ==> equiv) (@tbi_exist PROP t).
Proof. repeat intro. by apply tbi_exist_proper. Qed.
#[global] Instance tbi_exist_mono' {t} :
Proper (tele_fun_pointwise (⊢) ==> (⊢)) (@tbi_exist PROP t).
Proof. repeat intro. by apply tbi_exist_mono. Qed.
#[global] Instance tbi_exist_flip_mono' {t} :
Proper (tele_fun_pointwise (⊢) --> flip (⊢)) (@tbi_exist PROP t).
Proof. repeat intro. by apply tbi_exist_mono. Qed.
#[global] Instance: Params (@tbi_forall) 2 := {}.
#[global] Instance tbi_forall_ne' t : NonExpansive (@tbi_forall PROP t).
Proof. repeat intro. by apply tbi_forall_ne. Qed.
#[global] Instance tbi_forall_proper' t : Proper (equiv ==> equiv) (@tbi_forall PROP t).
Proof. repeat intro. by apply tbi_forall_proper. Qed.
#[global] Instance tbi_forall_mono' {t} :
Proper (tele_fun_pointwise (⊢) ==> (⊢)) (@tbi_forall PROP t).
Proof. repeat intro. by apply tbi_forall_mono. Qed.
#[global] Instance tbi_forall_flip_mono' {t} :
Proper (tele_fun_pointwise (⊢) --> flip (⊢)) (@tbi_forall PROP t).
Proof. repeat intro. by apply tbi_forall_mono. Qed.
Section proofmode.
Import proofmode.classes.
#[global] Instance tbi_exist_into_exist t (P : t -> PROP) name :
AsIdentName P name -> IntoExist (tbi_exist (tele_bind P)) P name.
Proof.
rewrite /IntoExist=>?. rewrite tbi_exist_exist.
f_equiv=>x. by rewrite tele_app_bind.
Qed.
#[global] Instance tbi_exist_from_exist t (P : t -> PROP) :
FromExist (tbi_exist (tele_bind P)) P.
Proof.
rewrite /FromExist. rewrite tbi_exist_exist.
f_equiv=>x. by rewrite tele_app_bind.
Qed.
#[global] Instance tbi_forall_into_forall t (P : t -> PROP) :
IntoForall (tbi_forall (tele_bind P)) P.
Proof.
rewrite /IntoForall. rewrite tbi_forall_forall.
f_equiv=>x. by rewrite tele_app_bind.
Qed.
#[global] Instance tbi_forall_from_forall t (P : t -> PROP) name :
AsIdentName P name -> FromForall (tbi_forall (tele_bind P)) P name.
Proof.
rewrite /FromForall=>?. rewrite tbi_forall_forall.
f_equiv=>x. by rewrite tele_app_bind.
Qed.
End proofmode.
End tele_fun_quantifiers.
#[global] Hint Opaque tbi_exist tbi_forall : typeclass_instances.
On Import, hide IPM instances related to telescopic quantifiers.
Those instances can impose spurious universe constraints when
proving universe polymorphic lemmas about tbi_exist,
tbi_forall. For example, iDestruct on a hypothesis of the form
tbi_exist@{X Z Y} (tele_bind ...) uses the IntoExist instance
for bi_texist with the side-effect of constraining universe Y
to being below a small universe like Type.0.
Module disable_proofmode_telescopes.
#[export] Remove Hints
class_instances.into_exist_texist class_instances.from_exist_texist
class_instances.into_forall_tforall class_instances.from_forall_tforall
tbi_exist_into_exist tbi_exist_from_exist
tbi_forall_into_forall tbi_forall_from_forall
: typeclass_instances.
End disable_proofmode_telescopes.
#[export] Remove Hints
class_instances.into_exist_texist class_instances.from_exist_texist
class_instances.into_forall_tforall class_instances.from_forall_tforall
tbi_exist_into_exist tbi_exist_from_exist
tbi_forall_into_forall tbi_forall_from_forall
: typeclass_instances.
End disable_proofmode_telescopes.