bedrock.prelude.wrap
(*
* Copyright (c) 2020-21 BedRock Systems, Inc.
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import stdpp.countable.
Require Import bedrock.prelude.numbers.
Require Import bedrock.prelude.list_numbers.
Section type.
#[local] Set Primitive Projections.
* Copyright (c) 2020-21 BedRock Systems, Inc.
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import stdpp.countable.
Require Import bedrock.prelude.numbers.
Require Import bedrock.prelude.list_numbers.
Section type.
#[local] Set Primitive Projections.
A generic wrapper for types isomorphic to N
Record WrapN {Phant : Set} : Set := MkWrapN { unwrapN : N }.
End type.
Add Printing Constructor WrapN.
Arguments WrapN Phant : clear implicits.
Arguments MkWrapN {Phant} _ : assert.
Notation Build_WrapN := @MkWrapN (only parsing).
(* Using the wrapper means we define these instances/lemmas only once. *)
Lemma cancel_unwrapN {Phant} (x : WrapN Phant) : MkWrapN (unwrapN x) = x.
Proof. done. Qed.
Lemma cancel_MkwrapN {Phant} n : unwrapN (Phant := Phant) (MkWrapN n) = n.
Proof. done. Qed.
#[global] Instance cancel_unwrapN_Build_WrapN {Phant} :
Cancel eq unwrapN (@MkWrapN Phant).
Proof. exact cancel_MkwrapN. Qed.
#[global] Instance cancel_Build_WrapN_unwrapN {Phant} :
Cancel eq (@MkWrapN Phant) unwrapN.
Proof. exact cancel_unwrapN. Qed.
#[global] Instance wrapN_eq_decision {Phant} : EqDecision (WrapN Phant).
Proof. solve_decision. Defined.
#[global] Instance wrapN_countable {Phant} : Countable (WrapN Phant) :=
inj_countable' unwrapN MkWrapN cancel_unwrapN.
#[global] Instance wrapN_inhabited {Phant} : Inhabited (WrapN Phant) :=
populate (MkWrapN 0).
#[global] Instance unwrapN_inj Phant : Inj eq eq (@unwrapN Phant).
Proof. intros [] [] ?. by simplify_eq/=. Qed.
#[global] Instance MkWrapN_inj Phant : Inj eq eq (@MkWrapN Phant).
Proof. by intros ?? [=]. Qed.
#[global] Declare Scope wrapN_scope.
#[global] Delimit Scope wrapN_scope with wrapN.
(* ^ it would be nicer to have one delimiting key per instantiation of WrapN,
but that doesn't seem possible? *)
#[global] Bind Scope wrapN_scope with WrapN.
Module Import wrapN_notations.
Class WrapNAdd {T U R : Set} := wrapN_add : T -> U -> R.
#[global] Instance wrapNN_add {Phant} : @WrapNAdd (WrapN Phant) N (WrapN Phant) :=
fun w n => MkWrapN (unwrapN w + n).
#[global] Instance NwrapN_add {Phant} : @WrapNAdd N (WrapN Phant) (WrapN Phant) :=
fun n w => MkWrapN (n + unwrapN w).
#[global] Instance wrapNwrapN_add {Phant} : @WrapNAdd (WrapN Phant) (WrapN Phant) (WrapN Phant) :=
fun w1 w2 => MkWrapN (unwrapN w1 + unwrapN w2).
Notation "0" := (MkWrapN 0) (only parsing) : wrapN_scope.
Infix "+" := wrapN_add (only parsing) : wrapN_scope.
End wrapN_notations.
#[global] Arguments wrapNN_add {_} _ _ /.
#[global] Arguments NwrapN_add {_} _ _ /.
#[global] Arguments wrapNwrapN_add {_} _ _ /.
#[global] Arguments wrapN_add {T U R _} _ _ /.
Section seqW.
Context {Phant : Set}.
Implicit Types (w : WrapN Phant).
#[local] Open Scope wrapN_scope.
Lemma wrapN_add_0N_l w : 0%N + w = w.
Proof. by rewrite /= N.add_0_l. Qed.
Lemma wrapN_add_0w_l w : 0 + w = w.
Proof. by rewrite /= N.add_0_l. Qed.
Lemma wrapN_add_0N_r w : w + 0%N = w.
Proof. by rewrite /= N.add_0_r. Qed.
Lemma wrapN_add_0w_r w : w + 0 = w.
Proof. by rewrite /= N.add_0_r. Qed.
Definition wrapN_succ w : WrapN Phant :=
MkWrapN $ N.succ $ unwrapN w.
Lemma unwrapN_succ_inj w : unwrapN (wrapN_succ w) = N.succ (unwrapN w).
Proof. done. Qed.
Definition seqW w (sz : N) : list (WrapN Phant) :=
MkWrapN <$> seqN (unwrapN w) sz.
Lemma cons_seqW len start :
start :: seqW (wrapN_succ start) len = seqW start (N.succ len).
Proof. by rewrite /seqW -cons_seqN. Qed.
(* Lifts seqN_S_end_app *)
Lemma seqW_S_end_app w n : seqW w (N.succ n) = seqW w n ++ [w + n].
Proof. by rewrite /seqW seqN_S_end_app fmap_app. Qed.
Lemma cons_seqW' [len start] sstart :
sstart = wrapN_succ start ->
start :: seqW sstart len = seqW start (N.succ len).
Proof. move->. apply cons_seqW. Qed.
Lemma seqW_S_end_app' [w n] sn :
sn = N.succ n ->
seqW w sn = seqW w n ++ [w + n].
Proof. move->. apply seqW_S_end_app. Qed.
End seqW.
Module Type wrapper.
Variant Phant : Set :=.
End type.
Add Printing Constructor WrapN.
Arguments WrapN Phant : clear implicits.
Arguments MkWrapN {Phant} _ : assert.
Notation Build_WrapN := @MkWrapN (only parsing).
(* Using the wrapper means we define these instances/lemmas only once. *)
Lemma cancel_unwrapN {Phant} (x : WrapN Phant) : MkWrapN (unwrapN x) = x.
Proof. done. Qed.
Lemma cancel_MkwrapN {Phant} n : unwrapN (Phant := Phant) (MkWrapN n) = n.
Proof. done. Qed.
#[global] Instance cancel_unwrapN_Build_WrapN {Phant} :
Cancel eq unwrapN (@MkWrapN Phant).
Proof. exact cancel_MkwrapN. Qed.
#[global] Instance cancel_Build_WrapN_unwrapN {Phant} :
Cancel eq (@MkWrapN Phant) unwrapN.
Proof. exact cancel_unwrapN. Qed.
#[global] Instance wrapN_eq_decision {Phant} : EqDecision (WrapN Phant).
Proof. solve_decision. Defined.
#[global] Instance wrapN_countable {Phant} : Countable (WrapN Phant) :=
inj_countable' unwrapN MkWrapN cancel_unwrapN.
#[global] Instance wrapN_inhabited {Phant} : Inhabited (WrapN Phant) :=
populate (MkWrapN 0).
#[global] Instance unwrapN_inj Phant : Inj eq eq (@unwrapN Phant).
Proof. intros [] [] ?. by simplify_eq/=. Qed.
#[global] Instance MkWrapN_inj Phant : Inj eq eq (@MkWrapN Phant).
Proof. by intros ?? [=]. Qed.
#[global] Declare Scope wrapN_scope.
#[global] Delimit Scope wrapN_scope with wrapN.
(* ^ it would be nicer to have one delimiting key per instantiation of WrapN,
but that doesn't seem possible? *)
#[global] Bind Scope wrapN_scope with WrapN.
Module Import wrapN_notations.
Class WrapNAdd {T U R : Set} := wrapN_add : T -> U -> R.
#[global] Instance wrapNN_add {Phant} : @WrapNAdd (WrapN Phant) N (WrapN Phant) :=
fun w n => MkWrapN (unwrapN w + n).
#[global] Instance NwrapN_add {Phant} : @WrapNAdd N (WrapN Phant) (WrapN Phant) :=
fun n w => MkWrapN (n + unwrapN w).
#[global] Instance wrapNwrapN_add {Phant} : @WrapNAdd (WrapN Phant) (WrapN Phant) (WrapN Phant) :=
fun w1 w2 => MkWrapN (unwrapN w1 + unwrapN w2).
Notation "0" := (MkWrapN 0) (only parsing) : wrapN_scope.
Infix "+" := wrapN_add (only parsing) : wrapN_scope.
End wrapN_notations.
#[global] Arguments wrapNN_add {_} _ _ /.
#[global] Arguments NwrapN_add {_} _ _ /.
#[global] Arguments wrapNwrapN_add {_} _ _ /.
#[global] Arguments wrapN_add {T U R _} _ _ /.
Section seqW.
Context {Phant : Set}.
Implicit Types (w : WrapN Phant).
#[local] Open Scope wrapN_scope.
Lemma wrapN_add_0N_l w : 0%N + w = w.
Proof. by rewrite /= N.add_0_l. Qed.
Lemma wrapN_add_0w_l w : 0 + w = w.
Proof. by rewrite /= N.add_0_l. Qed.
Lemma wrapN_add_0N_r w : w + 0%N = w.
Proof. by rewrite /= N.add_0_r. Qed.
Lemma wrapN_add_0w_r w : w + 0 = w.
Proof. by rewrite /= N.add_0_r. Qed.
Definition wrapN_succ w : WrapN Phant :=
MkWrapN $ N.succ $ unwrapN w.
Lemma unwrapN_succ_inj w : unwrapN (wrapN_succ w) = N.succ (unwrapN w).
Proof. done. Qed.
Definition seqW w (sz : N) : list (WrapN Phant) :=
MkWrapN <$> seqN (unwrapN w) sz.
Lemma cons_seqW len start :
start :: seqW (wrapN_succ start) len = seqW start (N.succ len).
Proof. by rewrite /seqW -cons_seqN. Qed.
(* Lifts seqN_S_end_app *)
Lemma seqW_S_end_app w n : seqW w (N.succ n) = seqW w n ++ [w + n].
Proof. by rewrite /seqW seqN_S_end_app fmap_app. Qed.
Lemma cons_seqW' [len start] sstart :
sstart = wrapN_succ start ->
start :: seqW sstart len = seqW start (N.succ len).
Proof. move->. apply cons_seqW. Qed.
Lemma seqW_S_end_app' [w n] sn :
sn = N.succ n ->
seqW w sn = seqW w n ++ [w + n].
Proof. move->. apply seqW_S_end_app. Qed.
End seqW.
Module Type wrapper.
Variant Phant : Set :=.
i.e., empty
Beware this is not actually (super)global:
https://github.com/coq/coq/issues/14988
#[global] Bind Scope wrapN_scope with t.
Definition of_N : N -> t := MkWrapN.
Definition to_N : t -> N := unwrapN.
Lemma of_to_N x : of_N (to_N x) = x.
Proof. apply cancel_unwrapN. Qed.
Lemma to_of_N x : to_N (of_N x) = x.
Proof. apply (inj of_N). by rewrite of_to_N. Qed.
End wrapper.
Module Type succ_wrapper (Import W : wrapper).
Notation succ := (wrapN_succ (Phant := Phant) : t -> t) (only parsing).
Notation seqW := (seqW (Phant := Phant) : (t -> N -> list t)) (only parsing).
End succ_wrapper.
Definition of_N : N -> t := MkWrapN.
Definition to_N : t -> N := unwrapN.
Lemma of_to_N x : of_N (to_N x) = x.
Proof. apply cancel_unwrapN. Qed.
Lemma to_of_N x : to_N (of_N x) = x.
Proof. apply (inj of_N). by rewrite of_to_N. Qed.
End wrapper.
Module Type succ_wrapper (Import W : wrapper).
Notation succ := (wrapN_succ (Phant := Phant) : t -> t) (only parsing).
Notation seqW := (seqW (Phant := Phant) : (t -> N -> list t)) (only parsing).
End succ_wrapper.
Example usage for wrapper:
Module your_type.
(* Include wrapper. *) (* Or *)
Include val_wrapper. (* Using val_wrap.v *)
Include succ_wrapper. (* If appropriate for your type. *)
End your_type.
(* Workaround https://github.com/coq/coq/issues/14988 *)
[global] Bind Scope wrapN_scope with your_type.t.
Include val_wrapper. (* Using val_wrap.v *)
End your_type.
[global] Bind Scope wrapN_scope with your_type.t.