bedrock.prelude.propset
(*
* Copyright (C) BedRock Systems Inc. 2021
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Export stdpp.propset.
* Copyright (C) BedRock Systems Inc. 2021
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Export stdpp.propset.
Definition π_set {D : Type} {F : D -> Type} (P : forall d, propset (F d))
: propset (forall d : D, F d) :=
{[ p | forall d, (p d) ∈ (P d) ]}.
Lemma propset_singleton_equiv {A} (x : A) :
{[ y | y = x ]} ≡ ({[ x ]} : propset A).
Proof. set_solver. Qed.
Lemma propset_singleton_equiv_unit {A} (x : A) :
{[ e | ∃ _ : (), e = x ]} ≡@{propset A} {[ x ]}.
Proof. set_solver. Qed.