bedrock.lang.bi.monpred_entailsN
(*
* Copyright (c) 2021 BedRock Systems, Inc.
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import iris.bi.monpred.
Require Import bedrock.lang.bi.entailsN.
* Copyright (c) 2021 BedRock Systems, Inc.
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import iris.bi.monpred.
Require Import bedrock.lang.bi.entailsN.
Section monPred_entailsN.
Context {I : biIndex} `{BiEntailsN PROP}.
Notation monPred := (monPred I PROP).
Notation monPredI := (monPredI I PROP).
Implicit Types i : I.
Implicit Types P Q : monPred.
Inductive monPred_entailsN' (n : nat) (P Q : monPred) : Prop :=
{ monPred_in_entailsN i : P i ⊢{n} Q i }.
#[local] Instance monPred_entailsN : EntailsN monPred := monPred_entailsN'.
Lemma monPred_entailsN_mixin : BiEntailsNMixin monPredI.
Proof.
split.
-
Context {I : biIndex} `{BiEntailsN PROP}.
Notation monPred := (monPred I PROP).
Notation monPredI := (monPredI I PROP).
Implicit Types i : I.
Implicit Types P Q : monPred.
Inductive monPred_entailsN' (n : nat) (P Q : monPred) : Prop :=
{ monPred_in_entailsN i : P i ⊢{n} Q i }.
#[local] Instance monPred_entailsN : EntailsN monPred := monPred_entailsN'.
Lemma monPred_entailsN_mixin : BiEntailsNMixin monPredI.
Proof.
split.
-
entailsN_trans
intros P Q R n [HPQ] [HQR]. split=>i.
by rewrite (HPQ i) (HQR i).
-
by rewrite (HPQ i) (HQR i).
-
entails_entailsN
intros P Q. split.
+ move=>[HPQ] n. split=>i. apply entails_entailsN, HPQ.
+ intros HPQ. split=>i. apply entails_entailsN=>n. apply HPQ.
-
+ move=>[HPQ] n. split=>i. apply entails_entailsN, HPQ.
+ intros HPQ. split=>i. apply entails_entailsN=>n. apply HPQ.
-
dist_entailsN
intros P Q. split.
+ case. setoid_rewrite dist_entailsN=>HPQ.
split; split=>i; by destruct (HPQ i).
+ intros [[?] [?]]. split=>i. apply dist_entailsN. by split.
-
+ case. setoid_rewrite dist_entailsN=>HPQ.
split; split=>i; by destruct (HPQ i).
+ intros [[?] [?]]. split=>i. apply dist_entailsN. by split.
-
pure_elimN'
intros P Q n HQ. split=>i.
rewrite monPred_at_pure. apply pure_elimN'=>HP.
rewrite -(monPred_at_pure i). apply (HQ HP).
-
rewrite monPred_at_pure. apply pure_elimN'=>HP.
rewrite -(monPred_at_pure i). apply (HQ HP).
-
and_introN
impl_introN_r
intros P Q R n [HR]. split=>i.
rewrite monPred_at_impl. apply forall_introN=>j.
apply impl_introN_l, impl_elimN_l'. apply pure_elimN'=>Hj.
apply impl_introN_r, impl_introN_r. rewrite left_id.
rewrite -(HR j) monPred_at_and. f_equiv.
by apply entails_entailsN, monPred_mono.
-
rewrite monPred_at_impl. apply forall_introN=>j.
apply impl_introN_l, impl_elimN_l'. apply pure_elimN'=>Hj.
apply impl_introN_r, impl_introN_r. rewrite left_id.
rewrite -(HR j) monPred_at_and. f_equiv.
by apply entails_entailsN, monPred_mono.
-
forall_introN
exist_elimN
sep_monoN
wand_introN_r
intros P Q R n [HR]. split=>i.
rewrite monPred_at_wand. apply forall_introN=>j.
apply impl_introN_l, impl_elimN_l'. apply pure_elimN'=>Hj.
apply impl_introN_r. rewrite left_id. apply wand_introN_r.
rewrite -(HR j) monPred_at_sep. f_equiv.
by apply entails_entailsN, monPred_mono.
Qed.
#[global] Instance monPred_bi_entailsN : BiEntailsN monPredI :=
{| bi_entailsN_mixin := monPred_entailsN_mixin |}.
End monPred_entailsN.
Section monpred.
Context {I : biIndex} `{BiEntailsN PROP}.
Implicit Types i j : I.
Implicit Types P Q : monPred I PROP.
Lemma monPred_monoN n i j P : i ⊑ j → monPred_at P i ⊢{n} monPred_at P j.
Proof. intros. by apply entails_entailsN, monPred_mono. Qed.
End monpred.
rewrite monPred_at_wand. apply forall_introN=>j.
apply impl_introN_l, impl_elimN_l'. apply pure_elimN'=>Hj.
apply impl_introN_r. rewrite left_id. apply wand_introN_r.
rewrite -(HR j) monPred_at_sep. f_equiv.
by apply entails_entailsN, monPred_mono.
Qed.
#[global] Instance monPred_bi_entailsN : BiEntailsN monPredI :=
{| bi_entailsN_mixin := monPred_entailsN_mixin |}.
End monPred_entailsN.
Section monpred.
Context {I : biIndex} `{BiEntailsN PROP}.
Implicit Types i j : I.
Implicit Types P Q : monPred I PROP.
Lemma monPred_monoN n i j P : i ⊑ j → monPred_at P i ⊢{n} monPred_at P j.
Proof. intros. by apply entails_entailsN, monPred_mono. Qed.
End monpred.