bedrock.prelude.tactics.proper
(*
* Copyright (C) BedRock Systems Inc. 2021-2022
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import iris.algebra.ofe. (* f_contractive *)
Require Import bedrock.prelude.telescopes.
Require Import bedrock.prelude.tactics.telescopes.
* Copyright (C) BedRock Systems Inc. 2021-2022
*
* This software is distributed under the terms of the BedRock Open-Source License.
* See the LICENSE-BedRock file in the repository root for details.
*)
Require Import iris.algebra.ofe. (* f_contractive *)
Require Import bedrock.prelude.telescopes.
Require Import bedrock.prelude.tactics.telescopes.
Tactics for Proper instances
- They use destruct_tele/= to destroy telescopic arguments in
- They unfold const in the conclusion.
- They account for (some) higher-order goals. Specifically,
- f_equiv directly supports some higher-order goals
- tele_arg now uses a fixpoint representation which should make
#[local] Ltac tidy_proper :=
repeat lazymatch goal with
| H : pointwise_relation _ _ _ _ |- _ => unfold pointwise_relation in H
| |- pointwise_relation _ _ _ _ => intros ?
| |- ∀ _, _ => intros ?
| |- context [const _] => unfold const
| t : tele_arg _ |- _ => destruct_tele/=
end.
Ltac f_equiv_tidy := first [progress tidy_proper | f_equiv].
Ltac solve_proper_tidy_prepare :=
solve_proper_prepare; tidy_proper.
Ltac solve_proper_tidy_core tac :=
solve_proper_tidy_prepare;
solve_proper_core ltac:(fun _ => first [f_equiv_tidy | tac ltac:(())]).
Ltac solve_proper_tidy :=
solve_proper_tidy_core ltac:(fun _ => trivial).
Extends iris.algebra.ofe.solve_contractive to "solve_contractive by tac".
Tactic Notation "solve_contractive" "by" tactic3(tac) :=
solve_proper_core ltac:(fun _ => first [ f_contractive | f_equiv | tac ]).
solve_proper_core ltac:(fun _ => first [ f_contractive | f_equiv | tac ]).
Handy for higher-order functions, especially those involving implicit arguments.
Tactic Notation "solve_proper" "using" uconstr(lem) :=
solve_proper_core ltac:(fun _ => first [by apply lem|f_equiv]).
Tactic Notation "solve_proper" "using" uconstr(lem1) ","
uconstr(lem2) :=
solve_proper_core ltac:(fun _ =>
first [by apply lem1|by apply lem2|f_equiv]
).
Tactic Notation "solve_proper" "using" uconstr(lem1) ","
uconstr(lem2) "," uconstr(lem3) :=
solve_proper_core ltac:(fun _ =>
first [by apply lem1|by apply lem2|by apply lem3|f_equiv]
).
Tactic Notation "solve_proper" "using" uconstr(lem1) ","
uconstr(lem2) "," uconstr(lem3) "," uconstr(lem4) :=
solve_proper_core ltac:(fun _ =>
first [by apply lem1|by apply lem2|by apply lem3|by apply lem4|f_equiv]
).
Tactic Notation "solve_contractive" "using" uconstr(lem) :=
solve_proper_core ltac:(fun _ => first [by apply lem|f_contractive|f_equiv]).
Tactic Notation "solve_contractive" "using" uconstr(lem1) ","
uconstr(lem2) :=
solve_proper_core ltac:(fun _ =>
first [by apply lem1|by apply lem2|f_contractive|f_equiv]
).
Tactic Notation "solve_contractive" "using" uconstr(lem1) ","
uconstr(lem2) "," uconstr(lem3) :=
solve_proper_core ltac:(fun _ =>
first [by apply lem1|by apply lem2|by apply lem3|f_contractive|f_equiv]
).
Tactic Notation "solve_contractive" "using" uconstr(lem1) ","
uconstr(lem2) "," uconstr(lem3) "," uconstr(lem4) :=
solve_proper_core ltac:(fun _ =>
first [by apply lem1|by apply lem2|by apply lem3|by apply lem4
|f_contractive|f_equiv]
).
solve_proper_core ltac:(fun _ => first [by apply lem|f_equiv]).
Tactic Notation "solve_proper" "using" uconstr(lem1) ","
uconstr(lem2) :=
solve_proper_core ltac:(fun _ =>
first [by apply lem1|by apply lem2|f_equiv]
).
Tactic Notation "solve_proper" "using" uconstr(lem1) ","
uconstr(lem2) "," uconstr(lem3) :=
solve_proper_core ltac:(fun _ =>
first [by apply lem1|by apply lem2|by apply lem3|f_equiv]
).
Tactic Notation "solve_proper" "using" uconstr(lem1) ","
uconstr(lem2) "," uconstr(lem3) "," uconstr(lem4) :=
solve_proper_core ltac:(fun _ =>
first [by apply lem1|by apply lem2|by apply lem3|by apply lem4|f_equiv]
).
Tactic Notation "solve_contractive" "using" uconstr(lem) :=
solve_proper_core ltac:(fun _ => first [by apply lem|f_contractive|f_equiv]).
Tactic Notation "solve_contractive" "using" uconstr(lem1) ","
uconstr(lem2) :=
solve_proper_core ltac:(fun _ =>
first [by apply lem1|by apply lem2|f_contractive|f_equiv]
).
Tactic Notation "solve_contractive" "using" uconstr(lem1) ","
uconstr(lem2) "," uconstr(lem3) :=
solve_proper_core ltac:(fun _ =>
first [by apply lem1|by apply lem2|by apply lem3|f_contractive|f_equiv]
).
Tactic Notation "solve_contractive" "using" uconstr(lem1) ","
uconstr(lem2) "," uconstr(lem3) "," uconstr(lem4) :=
solve_proper_core ltac:(fun _ =>
first [by apply lem1|by apply lem2|by apply lem3|by apply lem4
|f_contractive|f_equiv]
).